These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9390288)

  • 41. A new method for finding long consensus patterns in nucleic acid sequences.
    Taylor P; Rosenberg P; Samsonova MG
    Comput Appl Biosci; 1991 Oct; 7(4):495-500. PubMed ID: 1747782
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural DNA profiles: single sequence queries.
    Hirons L; Gardiner EJ; Hunter CA; Willett P
    J Chem Inf Model; 2006; 46(2):743-52. PubMed ID: 16563005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences.
    Estrada J; Ruiz-Herrero T; Scholes C; Wunderlich Z; DePace AH
    PLoS One; 2016; 11(3):e0151740. PubMed ID: 26987123
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Training back-propagation neural networks to define and detect DNA-binding sites.
    O'Neill MC
    Nucleic Acids Res; 1991 Jan; 19(2):313-8. PubMed ID: 2014171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesoscopic model for free-energy-landscape analysis of DNA sequences.
    Tapia-Rojo R; Prada-Gracia D; Mazo JJ; Falo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021908. PubMed ID: 23005786
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Location of repetitive regions in sequences by optimizing a compression method.
    Delgrange O; Dauchet M; Rivals E
    Pac Symp Biocomput; 1999; ():254-65. PubMed ID: 10380202
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finding weak motifs in DNA sequences.
    Sze SH; Gelfand MS; Pevzner PA
    Pac Symp Biocomput; 2002; ():235-46. PubMed ID: 11928479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements.
    Prestridge DS
    Comput Appl Biosci; 1991 Apr; 7(2):203-6. PubMed ID: 2059845
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interfering contexts of regulatory sequence elements.
    Trifonov EN
    Comput Appl Biosci; 1996 Oct; 12(5):423-9. PubMed ID: 8996791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ANN-Spec: a method for discovering transcription factor binding sites with improved specificity.
    Workman CT; Stormo GD
    Pac Symp Biocomput; 2000; ():467-78. PubMed ID: 10902194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. COMPEL: a database on composite regulatory elements providing combinatorial transcriptional regulation.
    Kel-Margoulis OV; Romashchenko AG; Kolchanov NA; Wingender E; Kel AE
    Nucleic Acids Res; 2000 Jan; 28(1):311-5. PubMed ID: 10592258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The statistical significance of nucleotide position-weight matrix matches.
    Claverie JM; Audic S
    Comput Appl Biosci; 1996 Oct; 12(5):431-9. PubMed ID: 8996792
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamic state ensemble models of cis-regulation.
    Sherman MS; Cohen BA
    PLoS Comput Biol; 2012; 8(3):e1002407. PubMed ID: 22479169
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data.
    Quandt K; Frech K; Karas H; Wingender E; Werner T
    Nucleic Acids Res; 1995 Dec; 23(23):4878-84. PubMed ID: 8532532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Finding regulatory sequences.
    Zhang LH; Liu DP; Liang CC
    Int J Biochem Cell Biol; 2003 Jan; 35(1):95-103. PubMed ID: 12467651
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recognising promoter sequences using an artificial immune system.
    Cooke DE; Hunt JE
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():89-97. PubMed ID: 7584471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detecting regulatory sites using PhyloGibbs.
    Siddharthan R; van Nimwegen E
    Methods Mol Biol; 2007; 395():381-402. PubMed ID: 17993687
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recognition of genes in human DNA sequences.
    Gelfand MS; Podolsky LI; Astakhova TV; Roytberg MA
    J Comput Biol; 1996; 3(2):223-34. PubMed ID: 8811484
    [TBL] [Abstract][Full Text] [Related]  

  • 59. gm: a practical tool for automating DNA sequence analysis.
    Fields CA; Soderlund CA
    Comput Appl Biosci; 1990 Jul; 6(3):263-70. PubMed ID: 2242161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The prediction of vertebrate promoter regions using differential hexamer frequency analysis.
    Hutchinson GB
    Comput Appl Biosci; 1996 Oct; 12(5):391-8. PubMed ID: 8996787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.