These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 9390422)
1. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Liu S; Dean RA Mol Plant Microbe Interact; 1997 Dec; 10(9):1075-86. PubMed ID: 9390422 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Fang EG; Dean RA Mol Plant Microbe Interact; 2000 Nov; 13(11):1214-27. PubMed ID: 11059488 [TBL] [Abstract][Full Text] [Related]
3. Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence. Kasahara S; Nuss DL Mol Plant Microbe Interact; 1997 Nov; 10(8):984-93. PubMed ID: 9353946 [TBL] [Abstract][Full Text] [Related]
4. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Kim S; Ahn IP; Rho HS; Lee YH Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997 [TBL] [Abstract][Full Text] [Related]
5. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Park G; Xue C; Zheng L; Lam S; Xu JR Mol Plant Microbe Interact; 2002 Mar; 15(3):183-92. PubMed ID: 11952120 [TBL] [Abstract][Full Text] [Related]
7. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae. Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571 [TBL] [Abstract][Full Text] [Related]
8. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus magnaporthe oryzae. Choi JH; Kim Y; Lee YH J Microbiol Biotechnol; 2009 Jan; 19(1):11-6. PubMed ID: 19190403 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning of three genes encoding G protein alpha subunits in the white root rot fungus, Rosellinia necatrix. Aimi T; Kano S; Wang Q; Morinaga T Biosci Biotechnol Biochem; 2001 Mar; 65(3):678-82. PubMed ID: 11330689 [TBL] [Abstract][Full Text] [Related]
11. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Kawamura C; Moriwaki J; Kimura N; Fujita Y; Fuji S; Hirano T; Koizumi S; Tsuge T Mol Plant Microbe Interact; 1997 May; 10(4):446-53. PubMed ID: 9150594 [TBL] [Abstract][Full Text] [Related]
12. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Choi W; Dean RA Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122 [TBL] [Abstract][Full Text] [Related]
13. Rgs1 regulates multiple Galpha subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. Liu H; Suresh A; Willard FS; Siderovski DP; Lu S; Naqvi NI EMBO J; 2007 Feb; 26(3):690-700. PubMed ID: 17255942 [TBL] [Abstract][Full Text] [Related]
14. Cross-pathway and pathway-specific control of amino acid biosynthesis in Magnaporthe grisea. Shen WC; Ebbole DJ Fungal Genet Biol; 1997 Feb; 21(1):40-9. PubMed ID: 9126616 [TBL] [Abstract][Full Text] [Related]
15. Cloning and characterization of a general amino acid control transcriptional activator from the chestnut blight fungus Cryphonectria parasitica. Wang P; Larson TG; Chen CH; Pawlyk DM; Clark JA; Nuss DL Fungal Genet Biol; 1998 Feb; 23(1):81-94. PubMed ID: 9501479 [TBL] [Abstract][Full Text] [Related]
16. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Froeliger EH; Carpenter BE Mol Gen Genet; 1996 Jul; 251(6):647-56. PubMed ID: 8757395 [TBL] [Abstract][Full Text] [Related]
17. Analysis of genes expressed during rice-Magnaporthe grisea interactions. Kim S; Ahn IP; Lee YH Mol Plant Microbe Interact; 2001 Nov; 14(11):1340-6. PubMed ID: 11763134 [TBL] [Abstract][Full Text] [Related]
18. A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Horwitz BA; Sharon A; Lu SW; Ritter V; Sandrock TM; Yoder OC; Turgeon BG Fungal Genet Biol; 1999 Feb; 26(1):19-32. PubMed ID: 10072317 [TBL] [Abstract][Full Text] [Related]
19. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Moriwaki A; Kihara J; Mori C; Arase S Microbiol Res; 2007; 162(2):108-14. PubMed ID: 16546358 [TBL] [Abstract][Full Text] [Related]
20. A novel gene MGA1 is required for appressorium formation in Magnaporthe grisea. Gupta A; Chattoo BB Fungal Genet Biol; 2007 Nov; 44(11):1157-69. PubMed ID: 17462923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]