These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 9390778)
1. T2-weighted MRI studies of mouse lemurs: a primate model of brain aging. Dhenain M; Michot JL; Volk A; Picq JL; Boller F Neurobiol Aging; 1997; 18(5):517-21. PubMed ID: 9390778 [TBL] [Abstract][Full Text] [Related]
2. Cerebral T2-weighted signal decrease during aging in the mouse lemur primate reflects iron accumulation. Dhenain M; Duyckaerts C; Michot JL; Volk A; Picq JL; Boller F Neurobiol Aging; 1998; 19(1):65-9. PubMed ID: 9562505 [TBL] [Abstract][Full Text] [Related]
3. Age dependence of the T2-weighted MRI signal in brain structures of a prosimian primate (Microcebus murinus). Dhenain M; Volk A; Picq JL; Perret M; Boller F; Michot JL Neurosci Lett; 1997 Nov; 237(2-3):85-8. PubMed ID: 9453221 [TBL] [Abstract][Full Text] [Related]
4. A 3D population-based brain atlas of the mouse lemur primate with examples of applications in aging studies and comparative anatomy. Nadkarni NA; Bougacha S; Garin C; Dhenain M; Picq JL Neuroimage; 2019 Jan; 185():85-95. PubMed ID: 30326295 [TBL] [Abstract][Full Text] [Related]
5. Sex-specific patterns of age-related cerebral atrophy in a nonhuman primate Microcebus murinus. Fritz RG; Zimmermann E; Picq JL; Lautier C; Meier M; Kästner S; Schmidtke D Neurobiol Aging; 2020 Jul; 91():148-159. PubMed ID: 32229027 [TBL] [Abstract][Full Text] [Related]
6. MRI description of cerebral atrophy in mouse lemur primates. Dhenain M; Michot JL; Privat N; Picq JL; Boller F; Duyckaerts C; Volk A Neurobiol Aging; 2000; 21(1):81-8. PubMed ID: 10794852 [TBL] [Abstract][Full Text] [Related]
7. Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease? Bons N; Rieger F; Prudhomme D; Fisher A; Krause KH Genes Brain Behav; 2006 Mar; 5(2):120-30. PubMed ID: 16507003 [TBL] [Abstract][Full Text] [Related]
8. Regional atrophy in the brain of lissencephalic mouse lemur primates: measurement by automatic histogram-based segmentation of MR images. Dhenain M; Chenu E; Hisley CK; Aujard F; Volk A Magn Reson Med; 2003 Nov; 50(5):984-92. PubMed ID: 14587009 [TBL] [Abstract][Full Text] [Related]
9. Sex differences in brain aging: a quantitative magnetic resonance imaging study. Coffey CE; Lucke JF; Saxton JA; Ratcliff G; Unitas LJ; Billig B; Bryan RN Arch Neurol; 1998 Feb; 55(2):169-79. PubMed ID: 9482358 [TBL] [Abstract][Full Text] [Related]
10. MRI of the brain in neurologically healthy middle-aged and elderly individuals. Salonen O; Autti T; Raininko R; Ylikoski A; Erkinjuntti T Neuroradiology; 1997 Aug; 39(8):537-45. PubMed ID: 9272488 [TBL] [Abstract][Full Text] [Related]
11. Micro-MRI study of cerebral aging: ex vivo detection of hippocampal subfield reorganization, microhemorrhages and amyloid plaques in mouse lemur primates. Bertrand A; Pasquier A; Petiet A; Wiggins C; Kraska A; Joseph-Mathurin N; Aujard F; Mestre-Francés N; Dhenain M PLoS One; 2013; 8(2):e56593. PubMed ID: 23460806 [TBL] [Abstract][Full Text] [Related]
12. MRI of the normal brain from early childhood to middle age. I. Appearances on T2- and proton density-weighted images and occurrence of incidental high-signal foci. Autti T; Raininko R; Vanhanen SL; Kallio M; Santavuori P Neuroradiology; 1994 Nov; 36(8):644-8. PubMed ID: 7862287 [TBL] [Abstract][Full Text] [Related]
13. Relation of education to brain size in normal aging: implications for the reserve hypothesis. Coffey CE; Saxton JA; Ratcliff G; Bryan RN; Lucke JF Neurology; 1999 Jul; 53(1):189-96. PubMed ID: 10408558 [TBL] [Abstract][Full Text] [Related]
15. Artificially accelerated aging by shortened photoperiod alters early gene expression (Fos) in the suprachiasmatic nucleus and sulfatoxymelatonin excretion in a small primate, Microcebus murinus. Aujard F; Dkhissi-Benyahya O; Fournier I; Claustrat B; Schilling A; Cooper HM; Perret M Neuroscience; 2001; 105(2):403-12. PubMed ID: 11672607 [TBL] [Abstract][Full Text] [Related]
16. Changes of magnetic resonance imaging on the brain in beagle dogs with aging. Kimotsuki T; Nagaoka T; Yasuda M; Tamahara S; Matsuki N; Ono K J Vet Med Sci; 2005 Oct; 67(10):961-7. PubMed ID: 16276050 [TBL] [Abstract][Full Text] [Related]
17. MRI of the normal brain from early childhood to middle age. II. Age dependence of signal intensity changes on T2-weighted images. Autti T; Raininko R; Vanhanen SL; Kallio M; Santavuori P Neuroradiology; 1994 Nov; 36(8):649-51. PubMed ID: 7862288 [TBL] [Abstract][Full Text] [Related]
18. [Early assessment of severe hypoxic-ischemic encephalopathy in neonates by diffusion-weighted magnetic resonance imaging techniques and its significance]. Fu JH; Xue XD; Mao J; Chen LY; Wang XM Zhonghua Er Ke Za Zhi; 2007 Nov; 45(11):843-7. PubMed ID: 18282417 [TBL] [Abstract][Full Text] [Related]
20. Mean amplitude of low frequency fluctuations measured by fMRI at 11.7 T in the aging brain of mouse lemur primate. Garin CM; Dhenain M Sci Rep; 2023 May; 13(1):7970. PubMed ID: 37198192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]