These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9390787)

  • 21. Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons.
    Caspary DM; Backoff PM; Finlayson PG; Palombi PS
    J Neurophysiol; 1994 Nov; 72(5):2124-33. PubMed ID: 7884448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic range of neural rate responses in the ventral cochlear nucleus of awake cats.
    May BJ; Sachs MB
    J Neurophysiol; 1992 Nov; 68(5):1589-602. PubMed ID: 1479432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitatory/inhibitory response types in the cochlear nucleus: relationships to discharge patterns and responses to electrical stimulation of the auditory nerve.
    Shofner WP; Young ED
    J Neurophysiol; 1985 Oct; 54(4):917-39. PubMed ID: 4067627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.
    Paraouty N; Stasiak A; Lorenzi C; Varnet L; Winter IM
    J Neurosci; 2018 Apr; 38(17):4123-4137. PubMed ID: 29599389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The time course of recovery from suppression and facilitation from single units in the mammalian cochlear nucleus.
    Bleeck S; Sayles M; Ingham NJ; Winter IM
    Hear Res; 2006 Feb; 212(1-2):176-84. PubMed ID: 16458460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inner hair cell response patterns: implications for low-frequency hearing.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 2001 Oct; 110(4):2034-44. PubMed ID: 11681383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contralateral inhibitory and excitatory frequency response maps in the mammalian cochlear nucleus.
    Ingham NJ; Bleeck S; Winter IM
    Eur J Neurosci; 2006 Nov; 24(9):2515-29. PubMed ID: 17100840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state.
    Kalluri S; Delgutte B
    J Comput Neurosci; 2003; 14(1):91-110. PubMed ID: 12435926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rebound depolarization in single units of the ventral cochlear nucleus: a contribution to grouping by common onset?
    Bleeck S; Ingham NJ; Verhey JL; Winter IM
    Neuroscience; 2008 Jun; 154(1):139-46. PubMed ID: 18479835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage.
    Wang J; Salvi RJ; Powers N
    J Neurophysiol; 1996 Jan; 75(1):171-83. PubMed ID: 8822550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral suppression and inhibition in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 Feb; 71(2):493-514. PubMed ID: 8176421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics.
    Cooper NP; Robertson D; Yates GK
    J Neurophysiol; 1993 Jul; 70(1):370-86. PubMed ID: 8395584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antidromic responses of single units from the spiral ganglion.
    Brown MC
    J Neurophysiol; 1994 May; 71(5):1835-47. PubMed ID: 8064351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Representation of harmonic complex stimuli in the ventral cochlear nucleus of the chinchilla.
    Recio A
    J Acoust Soc Am; 2001 Oct; 110(4):2024-33. PubMed ID: 11681382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural encoding of single-formant stimuli in the cat. I. Responses of auditory nerve fibers.
    Wang X; Sachs MB
    J Neurophysiol; 1993 Sep; 70(3):1054-75. PubMed ID: 8229159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat.
    Grothe B
    J Neurophysiol; 1994 Feb; 71(2):706-21. PubMed ID: 8176433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The temporal representation of the delay of iterated rippled noise in the ventral cochlear nucleus of the guinea-pig.
    Winter IM; Wiegrebe L; Patterson RD
    J Physiol; 2001 Dec; 537(Pt 2):553-66. PubMed ID: 11731585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of peripheral auditory neurons to two-tone stimuli during development: III. Rate facilitation.
    Fitzakerley JL; McGee JA; Walsh EJ
    Hear Res; 1994 Jun; 77(1-2):162-7. PubMed ID: 7928727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neurophysiol; 2008 Jan; 99(1):1-13. PubMed ID: 17928560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.