These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9390793)

  • 1. Incomplete recovery of chicken distortion product otoacoustic emissions following acoustic overstimulation.
    Trautwein P; Salvi RJ; Miller K; Shero M; Hashino E
    Audiol Neurootol; 1996; 1(2):86-103. PubMed ID: 9390793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Video-enhanced DIC images of the noise-damaged and regenerated chick tectorial membrane.
    Cotanche DA
    Exp Neurol; 1992 Jan; 115(1):23-6. PubMed ID: 1728568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals.
    Müller M; Smolders JW; Ding-Pfennigdorff D; Klinke R
    Hear Res; 1996 Dec; 102(1-2):133-54. PubMed ID: 8951458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term effect of acoustic trauma on distortion product otoacoustic emissions in chickens.
    Froymovich O; Rebala V; Salvi RJ; Rassael H
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3021-9. PubMed ID: 7759642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration of the tectorial membrane in the chick cochlea following severe acoustic trauma.
    Cotanche DA
    Hear Res; 1987; 30(2-3):197-206. PubMed ID: 3680065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning, spontaneous activity and tonotopic map in chicken cochlear ganglion neurons following sound-induced hair cell loss and regeneration.
    Chen L; Trautwein PG; Shero M; Salvi RJ
    Hear Res; 1996 Sep; 98(1-2):152-64. PubMed ID: 8880189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Amplitude changes in distortion products of otoacoustic emissions after acute noise exposure].
    Oeken J; Menz D
    Laryngorhinootologie; 1996 May; 75(5):265-9. PubMed ID: 8672208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional recovery in the avian ear after hair cell regeneration.
    Smolders JW
    Audiol Neurootol; 1999; 4(6):286-302. PubMed ID: 10516389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hair cell regeneration and recovery of function in the avian auditory system.
    Salvi RJ; Chen L; Trautwein P; Powers N; Shero M
    Scand Audiol Suppl; 1998; 48():7-14. PubMed ID: 9505293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of industrial noise exposure on distortion product otoacoustic emissions (DPOAEs) and hair cell loss of the cochlea--long term experiments in awake guinea pigs.
    Emmerich E; Richter F; Reinhold U; Linss V; Linss W
    Hear Res; 2000 Oct; 148(1-2):9-17. PubMed ID: 10978821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection.
    Canlon B
    Scand Audiol Suppl; 1988; 27():1-45. PubMed ID: 3043645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tectorial membrane repair in the quail following multiple exposures to intense sound.
    Adler HJ
    Audiol Neurootol; 1996; 1(2):65-79. PubMed ID: 9390791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of acoustic overexposure on the tonotopic organization of the nucleus magnocellularis.
    Cohen YE; Saunders JC
    Hear Res; 1994 Dec; 81(1-2):11-21. PubMed ID: 7737919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hair cell loss and regeneration after severe acoustic overstimulation in the adult pigeon.
    Ding-Pfennigdorff D; Smolders JW; Müller M; Klinke R
    Hear Res; 1998 Jun; 120(1-2):109-20. PubMed ID: 9667435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural and functional aspects of hair cell regeneration in the chick as a result of exposure to intense sound.
    Saunders JC; Adler HJ; Pugliano FA
    Exp Neurol; 1992 Jan; 115(1):13-7. PubMed ID: 1728559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-tone rate suppression boundaries of cochlear ganglion neurons in chickens following acoustic trauma.
    Chen L; Trautwein PG; Powers N; Salvi RJ
    J Acoust Soc Am; 1997 Oct; 102(4):2245-54. PubMed ID: 9348682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological vulnerability of distortion product otoacoustic emissions from the amphibian ear.
    van Dijk P; Narins PM; Mason MJ
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2044-8. PubMed ID: 14587603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of the basilar papilla following intense sound exposure in the chick.
    Marsh RR; Xu LR; Moy JP; Saunders JC
    Hear Res; 1990 Jul; 46(3):229-37. PubMed ID: 2394635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level.
    Burkard R; Salvi R; Chen L
    Audiol Neurootol; 1996; 1(4):197-213. PubMed ID: 9390802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Distortion product of otoacoustic emissions in normal hearing and sensorineural hearing loss].
    Schlögel H; Stephan K; Böheim K; Welzl-Müller K
    HNO; 1995 Jan; 43(1):19-24. PubMed ID: 7890546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.