These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9390941)

  • 1. Predictions of the time course of force and power output by dogfish white muscle fibres during brief tetani.
    Curtin NA; Gardner-Medwin AR; Woledge RC
    J Exp Biol; 1998 Jan; 201(Pt 1):103-14. PubMed ID: 9390941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained performance by red and white muscle fibres from the dogfish Scyliorhinus canicula.
    Curtin NA; Lou F; Woledge RC
    J Exp Biol; 2010 Jun; 213(11):1921-9. PubMed ID: 20472779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isometric and isovelocity contractile performance of red muscle fibres from the dogfish Scyliorhinus canicula.
    Lou F; Curtin NA; Woledge RC
    J Exp Biol; 2002 Jun; 205(Pt 11):1585-95. PubMed ID: 12000803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanics of mouse skeletal muscle when shortening during relaxation.
    Barclay CJ; Lichtwark GA
    J Biomech; 2007; 40(14):3121-9. PubMed ID: 17499255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic energy storage and release in white muscle from dogfish scyliorhinus canicula.
    Lou F; Curtin NA; Woledge RC
    J Exp Biol; 1999 Jan; 202 (Pt 2)():135-42. PubMed ID: 9851903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery after contraction of white muscle fibres from the dogfish Scyliorhinus canicula.
    Curtin NA; Kushmerick MJ; Wiseman RW; Woledge RC
    J Exp Biol; 1997 Apr; 200(Pt 7):1061-71. PubMed ID: 9131807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contraction with shortening during stimulation or during relaxation: how do the energetic costs compare?
    Lou F; Curtin NA; Woledge RC
    J Muscle Res Cell Motil; 1998 Oct; 19(7):797-802. PubMed ID: 9836150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of energy conversion during shortening of muscle fibres from the dogfish Scyliorhinus canicula.
    Curtin NA; Woledge RC
    J Exp Biol; 1991 Jul; 158():343-53. PubMed ID: 1919411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles.
    Altringham JD; Johnston IA
    J Physiol; 1982 Dec; 333():421-49. PubMed ID: 7182472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation.
    Askew GN; Marsh RL
    J Exp Biol; 1998 May; 201(Pt 10):1527-40. PubMed ID: 9556536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additional in-series compliance reduces muscle force summation and alters the time course of force relaxation during fixed-end contractions.
    Mayfield DL; Launikonis BS; Cresswell AG; Lichtwark GA
    J Exp Biol; 2016 Nov; 219(Pt 22):3587-3596. PubMed ID: 27609762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shortening during stimulation vs. during relaxation. How do the costs compare?
    Lou F; Curtin NA; Woledge RC
    Adv Exp Med Biol; 1998; 453():545-53; discussion 553-5. PubMed ID: 9889867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of force rise time during isometric contraction of frog muscle fibres.
    Edman KA; Josephson RK
    J Physiol; 2007 May; 580(Pt.3):1007-19. PubMed ID: 17303645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat production and oxygen consumption during metabolic recovery of white muscle fibres from the dogfish Scyliorhinus canicula.
    Lou F; van Der Laarse WJ; Curtin NA; Woledge RC
    J Exp Biol; 2000 Apr; 203(Pt 7):1201-10. PubMed ID: 10708640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ionic strength on the time course of force development and phosphate release by dogfish muscle fibres.
    West TG; Ferenczi MA; Woledge RC; Curtin NA
    J Physiol; 2005 Sep; 567(Pt 3):989-1000. PubMed ID: 16037082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of phosphate and temperature on force exerted by white muscle fibres from dogfish.
    Park-Holohan SJ; West TG; Woledge RC; Ferenczi MA; Barclay CJ; Curtin NA
    J Muscle Res Cell Motil; 2010 Jul; 31(1):35-44. PubMed ID: 20084431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power and efficiency: how to get the most out of striated muscle.
    Curtin NA; Woledge RC
    Adv Exp Med Biol; 1993; 332():729-33; discussion 733-4. PubMed ID: 8109383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power output of scallop adductor muscle during contractions replicating the in vivo mechanical cycle.
    Marsh RL; Olson JM
    J Exp Biol; 1994 Aug; 193():139-56. PubMed ID: 7964397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.