These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9390941)

  • 21. The effects of the level of activation and shortening velocity on energy output in type 3 muscle fibres from Xenopus laevis.
    Buschman HP; Elzinga G; Woledge RC
    Pflugers Arch; 1996; 433(1-2):153-9. PubMed ID: 9019716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature jump induced force generation in rabbit muscle fibres gets faster with shortening and shows a biphasic dependence on velocity.
    Ranatunga KW; Roots H; Offer GW
    J Physiol; 2010 Feb; 588(Pt 3):479-93. PubMed ID: 19948657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contractile properties of isolated muscle spindles of the frog.
    Edman KA; Radzyukevich T; Kronborg B
    J Physiol; 2002 Jun; 541(Pt 3):905-16. PubMed ID: 12068049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal muscle stiffness in static and dynamic contractions.
    Ettema GJ; Huijing PA
    J Biomech; 1994 Nov; 27(11):1361-8. PubMed ID: 7798286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanics of myosin function in white muscle fibres of the dogfish, Scyliorhinus canicula.
    Park-Holohan S; Linari M; Reconditi M; Fusi L; Brunello E; Irving M; Dolfi M; Lombardi V; West TG; Curtin NA; Woledge RC; Piazzesi G
    J Physiol; 2012 Apr; 590(8):1973-88. PubMed ID: 22310308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The energetic cost of activation of white muscle fibres from the dogfish Scyliorhinus canicula.
    Lou F; Curtin N; Woledge R
    J Exp Biol; 1997; 200(Pt 3):495-501. PubMed ID: 9318167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus).
    West TG; Toepfer CN; Woledge RC; Curtin NA; Rowlerson A; Kalakoutis M; Hudson P; Wilson AM
    J Exp Biol; 2013 Aug; 216(Pt 15):2974-82. PubMed ID: 23580727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study.
    Mörl F; Siebert T; Häufle D
    Biomech Model Mechanobiol; 2016 Feb; 15(1):245-58. PubMed ID: 26038176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slowing of relaxation and [Ca2+]i during prolonged tetanic stimulation of single fibres from Xenopus skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):723-36. PubMed ID: 8734985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.
    Plas RL; Degens H; Meijer JP; de Wit GM; Philippens IH; Bobbert MF; Jaspers RT
    J Exp Biol; 2015 Jul; 218(Pt 14):2166-73. PubMed ID: 25987730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of shortening on stretch-induced force enhancement in single skeletal muscle fibers.
    Rassier DE; Herzog W
    J Biomech; 2004 Sep; 37(9):1305-12. PubMed ID: 15275837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle.
    Campbell KS; Lakie M
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):941-62. PubMed ID: 9660904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy transfer during stress relaxation of contracting frog muscle fibres.
    Mantovani M; Heglund NC; Cavagna GA
    J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force-velocity and unloaded shortening velocity during graded potassium contractures in frog skeletal muscle fibres.
    Colomo F; Pizza L; Scialpi A
    J Muscle Res Cell Motil; 2000 Jan; 21(1):9-19. PubMed ID: 10813631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of prestretch at the onset of stimulation on mechanical work output of rat medial gastrocnemius muscle-tendon complex.
    Ettema GJ; Huijing PA; van Ingen Schenau GJ; de Haan A
    J Exp Biol; 1990 Sep; 152():333-51. PubMed ID: 2230638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles.
    Herzog W; Leonard TR
    J Biomech; 2000 May; 33(5):531-42. PubMed ID: 10708773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energetics and mechanics of contracting white myotomal fibres from dogfish, Scyliorhinus canicula.
    Curtin NA; Woledge RC
    Prog Clin Biol Res; 1989; 315():127-35. PubMed ID: 2798483
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.