These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 9391122)
1. Tissue engineering of cartilage in space. Freed LE; Langer R; Martin I; Pellis NR; Vunjak-Novakovic G Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13885-90. PubMed ID: 9391122 [TBL] [Abstract][Full Text] [Related]
2. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657 [TBL] [Abstract][Full Text] [Related]
3. Modulation of the mechanical properties of tissue engineered cartilage. Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE; Vunjak-Novakovic G Biorheology; 2000; 37(1-2):141-7. PubMed ID: 10912186 [TBL] [Abstract][Full Text] [Related]
4. Microgravity cultivation of cells and tissues. Freed LE; Pellis N; Searby N; de Luis J; Preda C; Bordonaro J; Vunjak-Novakovic G Gravit Space Biol Bull; 1999 May; 12(2):57-66. PubMed ID: 11541784 [TBL] [Abstract][Full Text] [Related]
5. Microgravity tissue engineering. Freed LE; Vunjak-Novakovic G In Vitro Cell Dev Biol Anim; 1997 May; 33(5):381-5. PubMed ID: 9196897 [TBL] [Abstract][Full Text] [Related]
6. Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture. Emin N; Koç A; Durkut S; Elçin AE; Elçin YM Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(2):123-37. PubMed ID: 18437589 [TBL] [Abstract][Full Text] [Related]
7. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering. Khan AA; Surrao DC Tissue Eng Part C Methods; 2012 May; 18(5):358-68. PubMed ID: 22092352 [TBL] [Abstract][Full Text] [Related]
8. Spaceflight bioreactor studies of cells and tissues. Freed LE; Vunjak-Novakovic G Adv Space Biol Med; 2002; 8():177-95. PubMed ID: 12951697 [TBL] [Abstract][Full Text] [Related]
9. Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor. Marlovits S; Tichy B; Truppe M; Gruber D; Vécsei V Tissue Eng; 2003 Dec; 9(6):1215-26. PubMed ID: 14670109 [TBL] [Abstract][Full Text] [Related]
10. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Mahmoudifar N; Doran PM Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710 [TBL] [Abstract][Full Text] [Related]
11. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Obradovic B; Carrier RL; Vunjak-Novakovic G; Freed LE Biotechnol Bioeng; 1999 Apr; 63(2):197-205. PubMed ID: 10099596 [TBL] [Abstract][Full Text] [Related]
12. Bioreactors mediate the effectiveness of tissue engineering scaffolds. Pei M; Solchaga LA; Seidel J; Zeng L; Vunjak-Novakovic G; Caplan AI; Freed LE FASEB J; 2002 Oct; 16(12):1691-4. PubMed ID: 12207008 [TBL] [Abstract][Full Text] [Related]
13. Chondrogenesis in a cell-polymer-bioreactor system. Freed LE; Hollander AP; Martin I; Barry JR; Langer R; Vunjak-Novakovic G Exp Cell Res; 1998 Apr; 240(1):58-65. PubMed ID: 9570921 [TBL] [Abstract][Full Text] [Related]
14. Mechanical shear properties of cell-polymer cartilage constructs. Stading M; Langer R Tissue Eng; 1999 Jun; 5(3):241-50. PubMed ID: 10434071 [TBL] [Abstract][Full Text] [Related]
15. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586 [TBL] [Abstract][Full Text] [Related]
16. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063 [TBL] [Abstract][Full Text] [Related]
17. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering. Laganà K; Moretti M; Dubini G; Raimondi MT Proc Inst Mech Eng H; 2008 Jul; 222(5):705-15. PubMed ID: 18756689 [TBL] [Abstract][Full Text] [Related]
18. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. Freed LE; Marquis JC; Nohria A; Emmanual J; Mikos AG; Langer R J Biomed Mater Res; 1993 Jan; 27(1):11-23. PubMed ID: 8380593 [TBL] [Abstract][Full Text] [Related]
19. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage. Gemmiti CV; Guldberg RE Tissue Eng; 2006 Mar; 12(3):469-79. PubMed ID: 16579680 [TBL] [Abstract][Full Text] [Related]
20. [An in vitro study on three-dimensional cultivation with dynamic compressive stimulation for cartilage tissue engineering]. Wang Yongcheng ; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1145-9. PubMed ID: 25509782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]