These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9391177)

  • 1. A model of long-term memory storage in the cerebellar cortex: a possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons.
    Kenyon GT
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):14200-5. PubMed ID: 9391177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses.
    Jörntell H; Hansel C
    Neuron; 2006 Oct; 52(2):227-38. PubMed ID: 17046686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of the cerebellar-olivary system I: self-regulating equilibrium of climbing fiber activity.
    Kenyon GT; Medina JF; Mauk MD
    J Comput Neurosci; 1998 Mar; 5(1):17-33. PubMed ID: 9540047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex.
    Lamont MG; Weber JT
    Neurosci Biobehav Rev; 2012 Apr; 36(4):1153-62. PubMed ID: 22305995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of the cerebellar-olivary system II: motor adaptation through systematic disruption of climbing fiber equilibrium.
    Kenyon GT; Medina JF; Mauk MD
    J Comput Neurosci; 1998 Mar; 5(1):71-90. PubMed ID: 9540050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic plasticity in the cerebellar cortex and its role in motor learning.
    Ito M
    Can J Neurol Sci; 1993 May; 20 Suppl 3():S70-4. PubMed ID: 8334595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel fiber receptive fields: a key to understanding cerebellar operation and learning.
    Ekerot CF; Jörntell H
    Cerebellum; 2003; 2(2):101-9. PubMed ID: 12880177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons.
    Jörntell H; Ekerot CF
    Neuron; 2002 May; 34(5):797-806. PubMed ID: 12062025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of complex spike timing-dependent plasticity in cerebellar learning.
    Roberts PD
    J Comput Neurosci; 2007 Jun; 22(3):283-96. PubMed ID: 17203402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of 4 Hz stimulation-induced parallel fiber-Purkinje cell presynaptic long-term plasticity in mouse cerebellar cortex in vivo.
    Chu CP; Zhao GY; Jin R; Zhao SN; Sun L; Qiu DL
    Eur J Neurosci; 2014 May; 39(10):1624-31. PubMed ID: 24666426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo.
    Jörntell H; Ekerot CF
    J Neurosci; 2003 Oct; 23(29):9620-31. PubMed ID: 14573542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum.
    Mauk MD; Donegan NH
    Learn Mem; 1997; 4(1):130-58. PubMed ID: 10456059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Origin of Physiological Local mGluR1 Supralinear Ca
    Ait Ouares K; Canepari M
    J Neurosci; 2020 Feb; 40(9):1795-1809. PubMed ID: 31969470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting a theory of cerebellar cortex.
    Yamazaki T; Lennon W
    Neurosci Res; 2019 Nov; 148():1-8. PubMed ID: 30922970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning.
    Sacchetti B; Scelfo B; Tempia F; Strata P
    Neuron; 2004 Jun; 42(6):973-82. PubMed ID: 15207241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse.
    Medina JF; Mauk MD
    J Neurosci; 1999 Aug; 19(16):7140-51. PubMed ID: 10436067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition gates supralinear Ca
    Gaffield MA; Rowan MJM; Amat SB; Hirai H; Christie JM
    Elife; 2018 Aug; 7():. PubMed ID: 30117806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input minimization: a model of cerebellar learning without climbing fiber error signals.
    Anastasio TJ
    Neuroreport; 2001 Dec; 12(17):3825-31. PubMed ID: 11726803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell type-specific plasticity at parallel fiber synapses onto Purkinje cells in the posterior caudal lobe of the mormyrid fish cerebellum.
    Zhang Y; Magnus G; Han VZ
    J Neurophysiol; 2018 Aug; 120(2):644-661. PubMed ID: 29668384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.