These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9391318)

  • 1. [Studies on the regulation of toxin production in Clostridium perfringens].
    Shimizu T
    Nihon Saikingaku Zasshi; 1997 Oct; 52(4):659-70. PubMed ID: 9391318
    [No Abstract]   [Full Text] [Related]  

  • 2. [Analysis of genomic structure and regulation of virulence genes of Clostridium perfringens].
    Shimizu T
    Nihon Saikingaku Zasshi; 2004 May; 59(2):377-85. PubMed ID: 15202278
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhanced production of phospholipase C and perfringolysin O (alpha and theta toxins) in a gatifloxacin-resistant strain of Clostridium perfringens.
    Rafii F; Park M; Bryant AE; Johnson SJ; Wagner RD
    Antimicrob Agents Chemother; 2008 Mar; 52(3):895-900. PubMed ID: 18160514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens.
    Ba-Thein W; Lyristis M; Ohtani K; Nisbet IT; Hayashi H; Rood JI; Shimizu T
    J Bacteriol; 1996 May; 178(9):2514-20. PubMed ID: 8626316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of extracellular toxin production in Clostridium perfringens.
    Rood JI; Lyristis M
    Trends Microbiol; 1995 May; 3(5):192-6. PubMed ID: 7627457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and application of a method for counterselectable in-frame deletion in Clostridium perfringens.
    Nariya H; Miyata S; Suzuki M; Tamai E; Okabe A
    Appl Environ Microbiol; 2011 Feb; 77(4):1375-82. PubMed ID: 21183644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Regulation of the toxin production in Clostridium perfringens].
    Shimizu T
    Nihon Saikingaku Zasshi; 1995 Jul; 50(3):737-44. PubMed ID: 7474345
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens.
    Ohtani K; Bhowmik SK; Hayashi H; Shimizu T
    FEMS Microbiol Lett; 2002 Mar; 209(1):113-8. PubMed ID: 12007663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel toxin regulator, the CPE1446-CPE1447 protein heteromeric complex, controls toxin genes in Clostridium perfringens.
    Obana N; Nakamura K
    J Bacteriol; 2011 Sep; 193(17):4417-24. PubMed ID: 21725013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13.
    Ohtani K; Kawsar HI; Okumura K; Hayashi H; Shimizu T
    FEMS Microbiol Lett; 2003 May; 222(1):137-41. PubMed ID: 12757957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Toxin Production in Clostridium perfringens.
    Ohtani K; Shimizu T
    Toxins (Basel); 2016 Jul; 8(7):. PubMed ID: 27399773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence analysis of flanking regions of the pfoA gene of Clostridium perfringens: beta-galactosidase gene (pbg) is located in the 3'-flanking region.
    Shimizu T; Kobayashi T; Ba-Thein W; Ohtani K; Hayashi H
    Microbiol Immunol; 1995; 39(9):677-86. PubMed ID: 8577281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An activity which restores theta toxin activity in some theta toxin-deficient mutants of Clostridium perfringens.
    Imagawa T; Higashi Y
    Microbiol Immunol; 1992; 36(5):523-7. PubMed ID: 1513265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens.
    Shimizu T; Ba-Thein W; Tamaki M; Hayashi H
    J Bacteriol; 1994 Mar; 176(6):1616-23. PubMed ID: 8132455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of a toxin gene by introduction of a foreign gene into the chromosome of Clostridium perfringens using targetron-induced mutagenesis.
    Chen Y; Caruso L; McClane B; Fisher D; Gupta P
    Plasmid; 2007 Sep; 58(2):182-9. PubMed ID: 17553563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus.
    Hunter SE; Brown JE; Oyston PC; Sakurai J; Titball RW
    Infect Immun; 1993 Sep; 61(9):3958-65. PubMed ID: 8359918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanolamine utilization supports Clostridium perfringens growth in infected tissues.
    Yagi H; Nakayama-Imaohji H; Nariya H; Tada A; Yamasaki H; Ugai H; Elahi M; Ono T; Kuwahara T
    Microb Pathog; 2018 Jun; 119():200-207. PubMed ID: 29654901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfringolysin O expression in Clostridium perfringens is independent of the upstream pfoR gene.
    Awad MM; Rood JI
    J Bacteriol; 2002 Apr; 184(7):2034-8. PubMed ID: 11889112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a toxin-deficient Clostridium perfringens strain, KZ1340.
    Shimizu T; Ohtani K; Ba-Thein W; Inui S; Nakamura S; Hayashi H
    Microbiol Immunol; 1996; 40(2):141-5. PubMed ID: 8867610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta2 toxin, a novel toxin produced by Clostridium perfringens.
    Gibert M; Jolivet-Reynaud C; Popoff MR
    Gene; 1997 Dec; 203(1):65-73. PubMed ID: 9426008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.