These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9391867)

  • 21. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading.
    Koeller W; Funke F; Hartmann F
    Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Damping properties of the nucleus pulposus.
    Vogel A; Pioletti DP
    Clin Biomech (Bristol); 2012 Nov; 27(9):861-5. PubMed ID: 22742820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhesus monkey intervertebral disk viscoelastic response to shear stress.
    Kelley BS; Lafferty JF; Bowman DA; Clark PA
    J Biomech Eng; 1983 Feb; 105(1):51-4. PubMed ID: 6843102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical analysis of the influence of nucleus pulposus removal on the biomechanical behavior of a lumbar motion segment.
    Huang J; Yan H; Jian F; Wang X; Li H
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1516-24. PubMed ID: 24893132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography.
    Beauchemin PF; Bayly PV; Garbow JR; Schmidt JLS; Okamoto RJ; Chériet F; Périé D
    NMR Biomed; 2018 Oct; 31(10):e3918. PubMed ID: 29727498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intervertebral disc response to cyclic loading--an animal model.
    Ekström L; Kaigle A; Hult E; Holm S; Rostedt M; Hansson T
    Proc Inst Mech Eng H; 1996; 210(4):249-58. PubMed ID: 9046185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of degeneration on the elastic modulus distribution in the lumbar intervertebral disc.
    Umehara S; Tadano S; Abumi K; Katagiri K; Kaneda K; Ukai T
    Spine (Phila Pa 1976); 1996 Apr; 21(7):811-9; discussion 820. PubMed ID: 8779011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viscoelastic behavior of oral mucosa. A rheological study using small-amplitude oscillatory shear tests.
    Lacoste-Ferré MH; Ober C; Samouillan V
    J Mech Behav Biomed Mater; 2023 Jul; 143():105898. PubMed ID: 37156074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Material properties of the human lumbar facet joint capsule.
    Little JS; Khalsa PS
    J Biomech Eng; 2005 Feb; 127(1):15-24. PubMed ID: 15868784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical and rheological characterization of mild intervertebral disc degeneration in a large animal model.
    Detiger SE; Hoogendoorn RJ; van der Veen AJ; van Royen BJ; Helder MN; Koenderink GH; Smit TH
    J Orthop Res; 2013 May; 31(5):703-9. PubMed ID: 23255234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear behavior of the human intervertebral disc under axial load.
    Kulak RF; Belytschko TB; Schultz AB
    J Biomech; 1976; 9(6):377-86. PubMed ID: 932051
    [No Abstract]   [Full Text] [Related]  

  • 35. Viscoelastic properties of the ovine posterior spinal ligaments are strain dependent.
    Ambrosetti-Giudici S; Gédet P; Ferguson SJ; Chegini S; Burger J
    Clin Biomech (Bristol); 2010 Feb; 25(2):97-102. PubMed ID: 19931955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulations of polyvinyl alcohol cryogel that mimic the biomechanical properties of soft tissues in the natural lumbar intervertebral disc.
    Wang BH; Campbell G
    Spine (Phila Pa 1976); 2009 Dec; 34(25):2745-53. PubMed ID: 19940732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model.
    Goto K; Tajima N; Chosa E; Totoribe K; Kuroki H; Arizumi Y; Arai T
    J Orthop Sci; 2002; 7(2):243-6. PubMed ID: 11956986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression.
    Recuerda M; Coté SP; Villemure I; Périé D
    J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.