BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 9391867)

  • 21. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading.
    Koeller W; Funke F; Hartmann F
    Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Damping properties of the nucleus pulposus.
    Vogel A; Pioletti DP
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):861-5. PubMed ID: 22742820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhesus monkey intervertebral disk viscoelastic response to shear stress.
    Kelley BS; Lafferty JF; Bowman DA; Clark PA
    J Biomech Eng; 1983 Feb; 105(1):51-4. PubMed ID: 6843102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical analysis of the influence of nucleus pulposus removal on the biomechanical behavior of a lumbar motion segment.
    Huang J; Yan H; Jian F; Wang X; Li H
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1516-24. PubMed ID: 24893132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography.
    Beauchemin PF; Bayly PV; Garbow JR; Schmidt JLS; Okamoto RJ; Chériet F; Périé D
    NMR Biomed; 2018 Oct; 31(10):e3918. PubMed ID: 29727498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intervertebral disc response to cyclic loading--an animal model.
    Ekström L; Kaigle A; Hult E; Holm S; Rostedt M; Hansson T
    Proc Inst Mech Eng H; 1996; 210(4):249-58. PubMed ID: 9046185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of degeneration on the elastic modulus distribution in the lumbar intervertebral disc.
    Umehara S; Tadano S; Abumi K; Katagiri K; Kaneda K; Ukai T
    Spine (Phila Pa 1976); 1996 Apr; 21(7):811-9; discussion 820. PubMed ID: 8779011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viscoelastic behavior of oral mucosa. A rheological study using small-amplitude oscillatory shear tests.
    Lacoste-Ferré MH; Ober C; Samouillan V
    J Mech Behav Biomed Mater; 2023 Jul; 143():105898. PubMed ID: 37156074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Material properties of the human lumbar facet joint capsule.
    Little JS; Khalsa PS
    J Biomech Eng; 2005 Feb; 127(1):15-24. PubMed ID: 15868784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical and rheological characterization of mild intervertebral disc degeneration in a large animal model.
    Detiger SE; Hoogendoorn RJ; van der Veen AJ; van Royen BJ; Helder MN; Koenderink GH; Smit TH
    J Orthop Res; 2013 May; 31(5):703-9. PubMed ID: 23255234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear behavior of the human intervertebral disc under axial load.
    Kulak RF; Belytschko TB; Schultz AB
    J Biomech; 1976; 9(6):377-86. PubMed ID: 932051
    [No Abstract]   [Full Text] [Related]  

  • 35. Viscoelastic properties of the ovine posterior spinal ligaments are strain dependent.
    Ambrosetti-Giudici S; Gédet P; Ferguson SJ; Chegini S; Burger J
    Clin Biomech (Bristol, Avon); 2010 Feb; 25(2):97-102. PubMed ID: 19931955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulations of polyvinyl alcohol cryogel that mimic the biomechanical properties of soft tissues in the natural lumbar intervertebral disc.
    Wang BH; Campbell G
    Spine (Phila Pa 1976); 2009 Dec; 34(25):2745-53. PubMed ID: 19940732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model.
    Goto K; Tajima N; Chosa E; Totoribe K; Kuroki H; Arizumi Y; Arai T
    J Orthop Sci; 2002; 7(2):243-6. PubMed ID: 11956986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression.
    Recuerda M; Coté SP; Villemure I; Périé D
    J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.