These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9391869)

  • 21. A technique for estimating mechanical work of individual muscles in the cat during treadmill locomotion.
    Whiting WC; Gregor RJ; Roy RR; Edgerton VR
    J Biomech; 1984; 17(9):685-94. PubMed ID: 6501328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is coordination of two-joint leg muscles during load lifting consistent with the strategy of minimum fatigue?
    Prilutsky BI; Isaka T; Albrecht AM; Gregor RJ
    J Biomech; 1998 Nov; 31(11):1025-34. PubMed ID: 9880059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional role of muscle reflexes for force generation in the decerebrate walking cat.
    Stein RB; Misiaszek JE; Pearson KG
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):781-91. PubMed ID: 10856129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coordination between head and hindlimb motions during the cat scratch response.
    Carlson-Kuhta P; Smith JL
    Exp Brain Res; 1994; 101(2):279-90. PubMed ID: 7843314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Premature deactivation of soleus during the propulsive phase of cat jumping.
    Kaya M; Leonard TR; Herzog W
    J R Soc Interface; 2008 Apr; 5(21):415-26. PubMed ID: 17848364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.
    Trank TV; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):678-9. PubMed ID: 8714644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-functionality of the cat medical gastrocnemius during locomotion.
    Kaya M; Jinha A; Leonard TR; Herzog W
    J Biomech; 2005 Jun; 38(6):1291-301. PubMed ID: 15863114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscular synergism--II. A minimum-fatigue criterion for load sharing between synergistic muscles.
    Dul J; Johnson GE; Shiavi R; Townsend MA
    J Biomech; 1984; 17(9):675-84. PubMed ID: 6501327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses.
    Raikova RT; Prilutsky BI
    J Biomech; 2001 Oct; 34(10):1243-55. PubMed ID: 11522304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. No functionally relevant mechanical effects of epimuscular myofascial connections between rat ankle plantar flexors.
    Tijs C; van Dieën JH; Maas H
    J Exp Biol; 2015 Sep; 218(Pt 18):2935-41. PubMed ID: 26206361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comments on 'Relationship between ankle muscle and joint kinetics during the stance phase of locomotion in the cat'.
    Herzog W; Prilutsky BI
    J Biomech; 1995 May; 28(5):643-5. PubMed ID: 7775501
    [No Abstract]   [Full Text] [Related]  

  • 33. Prediction of dynamic tendon forces from electromyographic signals: an artificial neural network approach.
    Savelberg HH; Herzog W
    J Neurosci Methods; 1997 Dec; 78(1-2):65-74. PubMed ID: 9497002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Static and dynamic gamma-motor output to ankle flexor muscles during locomotion in the decerebrate cat.
    Taylor A; Durbaba R; Ellaway PH; Rawlinson S
    J Physiol; 2006 Mar; 571(Pt 3):711-23. PubMed ID: 16423858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Task-dependent activity of motor unit populations in feline ankle extensor muscles.
    Hodson-Tole EF; Pantall A; Maas H; Farrell B; Gregor RJ; Prilutsky BI
    J Exp Biol; 2012 Nov; 215(Pt 21):3711-22. PubMed ID: 22811250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short-term motor compensations to denervation of feline soleus and lateral gastrocnemius result in preservation of ankle mechanical output during locomotion.
    Prilutsky BI; Maas H; Bulgakova M; Hodson-Tole EF; Gregor RJ
    Cells Tissues Organs; 2011; 193(5):310-24. PubMed ID: 21411965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running.
    Gabaldón AM; Nelson FE; Roberts TJ
    J Exp Biol; 2004 Jun; 207(Pt 13):2277-88. PubMed ID: 15159432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic muscle force predictions from EMG: an artificial neural network approach.
    Liu MM; Herzog W; Savelberg HH
    J Electromyogr Kinesiol; 1999 Dec; 9(6):391-400. PubMed ID: 10597052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.