BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9391871)

  • 1. Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection.
    Rijcken J; Bovendeerd PH; Schoofs AJ; van Campen DH; Arts T
    J Biomech; 1997 Oct; 30(10):1041-9. PubMed ID: 9391871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study.
    Bovendeerd PH; Arts T; Huyghe JM; van Campen DH; Reneman RS
    J Biomech; 1992 Oct; 25(10):1129-40. PubMed ID: 1400513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection.
    Rijcken J; Bovendeerd PH; Schoofs AJ; van Campen DH; Arts T
    Ann Biomed Eng; 1999; 27(3):289-97. PubMed ID: 10374722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics.
    Bovendeerd PH; Huyghe JM; Arts T; van Campen DH; Reneman RS
    J Biomech; 1994 Jul; 27(7):941-51. PubMed ID: 8063844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging.
    Rademakers FE; Rogers WJ; Guier WH; Hutchins GM; Siu CO; Weisfeldt ML; Weiss JL; Shapiro EP
    Circulation; 1994 Mar; 89(3):1174-82. PubMed ID: 8124804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of left ventricular fibre orientation of the normal heart for homogeneous sarcomere length during ejection.
    Rijcken J; Arts T; Bovendeerd P; Schoofs B; van Campen D
    Eur J Morphol; 1996; 34(1):39-46. PubMed ID: 8743097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics.
    Harrington KB; Rodriguez F; Cheng A; Langer F; Ashikaga H; Daughters GT; Criscione JC; Ingels NB; Miller DC
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1324-30. PubMed ID: 15550521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between transmural deformation and local myofiber direction in canine left ventricle.
    Waldman LK; Nosan D; Villarreal F; Covell JW
    Circ Res; 1988 Sep; 63(3):550-62. PubMed ID: 3409487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element stress analysis of left ventricular mechanics in the beating dog heart.
    Guccione JM; Costa KD; McCulloch AD
    J Biomech; 1995 Oct; 28(10):1167-77. PubMed ID: 8550635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equations for estimating muscle fiber stress in the left ventricular wall.
    Rabben SI; Irgens F; Angelsen B
    Heart Vessels; 1999; 14(4):189-96. PubMed ID: 10776823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2638-41. PubMed ID: 21096187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epicardial deformation and left ventricular wall mechanisms during ejection in the dog.
    Arts T; Veenstra PC; Reneman RS
    Am J Physiol; 1982 Sep; 243(3):H379-90. PubMed ID: 7114270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy.
    MacGowan GA; Shapiro EP; Azhari H; Siu CO; Hees PS; Hutchins GM; Weiss JL; Rademakers FE
    Circulation; 1997 Jul; 96(2):535-41. PubMed ID: 9244222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between myocardial fiber direction and segment shortening in the midwall of the canine left ventricle.
    Freeman GL; LeWinter MM; Engler RL; Covell JW
    Circ Res; 1985 Jan; 56(1):31-9. PubMed ID: 3967346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging.
    Lee WN; Pernot M; Couade M; Messas E; Bruneval P; Bel A; Hagège AA; Fink M; Tanter M
    IEEE Trans Med Imaging; 2012 Mar; 31(3):554-62. PubMed ID: 22020673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subepicardial fiber strain and stress as related to left ventricular pressure and volume.
    Delhaas T; Arts T; Bovendeerd PH; Prinzen FW; Reneman RS
    Am J Physiol; 1993 May; 264(5 Pt 2):H1548-59. PubMed ID: 8498569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics of ventricular torsion.
    Taber LA; Yang M; Podszus WW
    J Biomech; 1996 Jun; 29(6):745-52. PubMed ID: 9147971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency.
    Vendelin M; Bovendeerd PH; Engelbrecht J; Arts T
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1072-81. PubMed ID: 12181137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of undersized mitral annuloplasty on regional transmural left ventricular wall strains and wall thickening mechanisms.
    Cheng A; Nguyen TC; Malinowski M; Liang D; Daughters GT; Ingels NB; Miller DC
    Circulation; 2006 Jul; 114(1 Suppl):I600-9. PubMed ID: 16820645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle.
    Omens JH; May KD; McCulloch AD
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H918-28. PubMed ID: 1887936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.