These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9392376)

  • 1. Chromatography on cells and biomolecular assemblies.
    Lundqvist A; Lundahl P
    J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):209-20. PubMed ID: 9392376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steric immobilization of liposomes in chromatographic gel beads and incorporation of integral membrane proteins into their lipid bilayers.
    Yang Q; Lundahl P
    Anal Biochem; 1994 Apr; 218(1):210-21. PubMed ID: 8053556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatographic approaches to liposomes, proteoliposomes and biomembrane vesicles.
    Lundahl P; Zeng CM; Lagerquist Hägglund C; Gottschalk I; Greijer E
    J Chromatogr B Biomed Sci Appl; 1999 Feb; 722(1-2):103-20. PubMed ID: 10068136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liposome chromatography: liposomes immobilized in gel beads as a stationary phase for aqueous column chromatography.
    Lundahl P; Yang Q
    J Chromatogr; 1991 May; 544(1-2):283-304. PubMed ID: 1885691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose affinity for the glucose transporter Glut1 in native or reconstituted lipid bilayers. Temperature-dependence study by biomembrane affinity chromatography.
    Lundqvist A; Lundahl P
    J Chromatogr A; 1997 Jul; 776(1):87-91. PubMed ID: 9286081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomembrane affinity chromatographic analysis of inhibitor binding to the human red cell nucleoside transporter in immobilized cells, vesicles and proteoliposomes.
    Haneskog L; Zeng CM; Lundqvist A; Lundahl P
    Biochim Biophys Acta; 1998 Apr; 1371(1):1-4. PubMed ID: 9565649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The membrane-binding properties of a class A amphipathic peptide.
    Mozsolits H; Lee TH; Clayton AH; Sawyer WH; Aguilar MI
    Eur Biophys J; 2004 Apr; 33(2):98-108. PubMed ID: 12879312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized liposome chromatography for analysis of interactions between lipid bilayers and peptides.
    Zhang Y; Aimoto S; Lu L; Yang Q; Lundahl P
    Anal Biochem; 1995 Aug; 229(2):291-8. PubMed ID: 7485985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized-liposome chromatographic analysis of drug partitioning into lipid bilayers.
    Beigi F; Yang Q; Lundahl P
    J Chromatogr A; 1995 Jun; 704(2):315-21. PubMed ID: 7670628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous phase separation as a possible route to compartmentalization of biological molecules.
    Keating CD
    Acc Chem Res; 2012 Dec; 45(12):2114-24. PubMed ID: 22330132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent immobilized artificial membrane chromatography, an improved method for describing peptide-lipid bilayer interactions.
    Krause E; Dathe M; Wieprecht T; Bienert M
    J Chromatogr A; 1999 Jul; 849(1):125-33. PubMed ID: 10444840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of triphenylalkylphosphonium homologues in gel bead-immobilized liposomes: chromatographic measurement of their membrane partition coefficients.
    Yang Q; Liu XY; Umetani K; Kamo N; Miyake J
    Biochim Biophys Acta; 1999 Feb; 1417(1):122-30. PubMed ID: 10076041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advantages of quantitative affinity chromatography for the analysis of solute interaction with membrane proteins.
    Lundqvist A; Lundahl P
    J Biochem Biophys Methods; 2001 Oct; 49(1-3):507-21. PubMed ID: 11694298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cholesterol and model transmembrane proteins on drug partitioning into lipid bilayers as analysed by immobilized-liposome chromatography.
    Lagerquist C; Beigi F; Karlén A; Lennernäs H; Lundahl P
    J Pharm Pharmacol; 2001 Nov; 53(11):1477-87. PubMed ID: 11732750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly stabilized, polymer-lipid membranes prepared on silica microparticles as stationary phases for capillary chromatography.
    Gallagher ES; Adem SM; Baker CA; Ratnayaka SN; Jones IW; Hall HK; Saavedra SS; Aspinwall CA
    J Chromatogr A; 2015 Mar; 1385():28-34. PubMed ID: 25670414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-induced destabilization of lipid bilayers by a lipopeptide derived from influenza hemagglutinin.
    Bailey AL; Monck MA; Cullis PR
    Biochim Biophys Acta; 1997 Mar; 1324(2):232-44. PubMed ID: 9092710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol-rich membrane coatings for interaction studies in capillary electrophoresis: application to red blood cell lipid extracts.
    Lindén MV; Holopainen JM; Laukkanen A; Riekkola ML; Wiedmer SK
    Electrophoresis; 2006 Oct; 27(20):3988-98. PubMed ID: 16983633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lithium on the human erythrocyte membrane and molecular models.
    Suwalsky M; Fierro P; Villena F; Sotomayor CP
    Biophys Chem; 2007 Aug; 129(1):36-42. PubMed ID: 17532553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphipathic peptide affects the lateral domain organization of lipid bilayers.
    Polozov IV; Polozova AI; Molotkovsky JG; Epand RM
    Biochim Biophys Acta; 1997 Sep; 1328(2):125-39. PubMed ID: 9315610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.