BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9392380)

  • 1. Post-translational non-enzymatic modification of proteins. I. Chromatography of marker adducts with special emphasis to glycation reactions.
    Deyl Z; Miksík I
    J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):287-309. PubMed ID: 9392380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nepsilon-(Carboxymethyl)lysine and 3-DG-imidazolone are major AGE structures in protein modification by 3-deoxyglucosone.
    Jono T; Nagai R; Lin X; Ahmed N; Thornalley PJ; Takeya M; Horiuchi S
    J Biochem; 2004 Sep; 136(3):351-8. PubMed ID: 15598892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of pentosidine and pyrraline in food and chemical models: formation, potential risks and determination.
    Li H; Yu SJ
    J Sci Food Agric; 2018 Jul; 98(9):3225-3233. PubMed ID: 29280151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Maillard reaction and food allergies: is there a link?
    Toda M; Heilmann M; Ilchmann A; Vieths S
    Clin Chem Lab Med; 2014 Jan; 52(1):61-7. PubMed ID: 23492561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced glycated end-products (AGE) during haemodialysis treatment: discrepant results with different methodologies reflecting the heterogeneity of AGE compounds.
    Henle T; Deppisch R; Beck W; Hergesell O; Hänsch GM; Ritz E
    Nephrol Dial Transplant; 1999 Aug; 14(8):1968-75. PubMed ID: 10462279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study on the generation of furosine and pyrraline in a Maillard reaction model system of d-glucose and l-lysine.
    Yu H; Zhong Q; Xie Y; Guo Y; Cheng Y; Yao W
    Food Chem; 2020 Jul; 317():126458. PubMed ID: 32109656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational non-enzymatic modification of proteins. II. Separation of selected protein species after glycation and other carbonyl-mediated modifications.
    Miksík I; Deyl Z
    J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):311-45. PubMed ID: 9392381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrraline ether crosslinks as a basis for protein crosslinking by the advanced Maillard reaction in aging and diabetes.
    Nagaraj RH; Portero-Otin M; Monnier VM
    Arch Biochem Biophys; 1996 Jan; 325(2):152-8. PubMed ID: 8561492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoglobulin-G Glycation by Fructose Leads to Structural Perturbations and Drop Off in Free Lysine and Arginine Residues.
    Faisal M; Alatar AA; Ahmad S
    Protein Pept Lett; 2017; 24(3):241-244. PubMed ID: 28124608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on N-terminal glycation of peptides in hypoallergenic infant formulas: quantification of alpha-N-(2-furoylmethyl) amino acids.
    Penndorf I; Biedermann D; Maurer SV; Henle T
    J Agric Food Chem; 2007 Feb; 55(3):723-7. PubMed ID: 17263466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways of formation of glycoxidation products during glycation of collagen.
    Wells-Knecht MC; Thorpe SR; Baynes JW
    Biochemistry; 1995 Nov; 34(46):15134-41. PubMed ID: 7578127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of amino acid residues in carious dentin matrix.
    Kleter GA; Damen JJ; Buijs MJ; Ten Cate JM
    J Dent Res; 1998 Mar; 77(3):488-95. PubMed ID: 9496922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of vimentin: a general mechanism of nonenzymatic glycation in human skin.
    Kueper T; Grune T; Muhr GM; Lenz H; Wittern KP; Wenck H; Stäb F; Blatt T
    Ann N Y Acad Sci; 2008 Apr; 1126():328-32. PubMed ID: 18448838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose.
    Wells-Knecht KJ; Zyzak DV; Litchfield JE; Thorpe SR; Baynes JW
    Biochemistry; 1995 Mar; 34(11):3702-9. PubMed ID: 7893666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of urinary pyrraline by solid-phase extraction and high performance liquid chromatography.
    Yoshihara K; Kiyonami R; Shimizu Y; Beppu M
    Biol Pharm Bull; 2001 Aug; 24(8):863-6. PubMed ID: 11510474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced Maillard reaction end products are associated with Alzheimer disease pathology.
    Smith MA; Taneda S; Richey PL; Miyata S; Yan SD; Stern D; Sayre LM; Monnier VM; Perry G
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5710-4. PubMed ID: 8202552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatographic evidence for pyrraline formation during protein glycation in vitro and in vivo.
    Portero-Otin M; Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Feb; 1247(1):74-80. PubMed ID: 7873594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins.
    Zeng J; Davies MJ
    Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.