These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9392382)
21. New methods of protein purification. Expanded bed chromatography. Galaev IY Biochemistry (Mosc); 1998 Jun; 63(6):619-24. PubMed ID: 9668200 [TBL] [Abstract][Full Text] [Related]
22. Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds. Yun J; Lin DQ; Yao SJ J Chromatogr A; 2005 Nov; 1095(1-2):16-26. PubMed ID: 16275279 [TBL] [Abstract][Full Text] [Related]
23. Chromatography modelling to describe protein adsorption at bead level. Gerontas S; Shapiro MS; Bracewell DG J Chromatogr A; 2013 Apr; 1284():44-52. PubMed ID: 23433886 [TBL] [Abstract][Full Text] [Related]
24. On-line separation of native proteins by two-dimensional liquid chromatography using a single column. Geng X; Ke C; Chen G; Liu P; Wang F; Zhang H; Sun X J Chromatogr A; 2009 Apr; 1216(16):3553-62. PubMed ID: 19232621 [TBL] [Abstract][Full Text] [Related]
25. Challenges in liquid chromatographic characterization of proteins. Bobály B; Sipkó E; Fekete J J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1032():3-22. PubMed ID: 27156149 [TBL] [Abstract][Full Text] [Related]
26. Electromigration for separations of protein complexes. Tulp A; Verwoerd D; Neefjes J J Chromatogr B Biomed Sci Appl; 1999 Feb; 722(1-2):141-51. PubMed ID: 10068138 [TBL] [Abstract][Full Text] [Related]
27. New packing materials for protein chromatography. Leonard M J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):3-27. PubMed ID: 9392365 [TBL] [Abstract][Full Text] [Related]
28. Computer assisted liquid chromatographic method development for the separation of therapeutic proteins. Tyteca E; Veuthey JL; Desmet G; Guillarme D; Fekete S Analyst; 2016 Oct; 141(19):5488-501. PubMed ID: 27545865 [TBL] [Abstract][Full Text] [Related]
29. Potential of adsorption isotherm measurements for closer elucidating of binding in chiral liquid chromatographic phase systems. Samuelsson J; Arnell R; Fornstedt T J Sep Sci; 2009 May; 32(10):1491-506. PubMed ID: 19472282 [TBL] [Abstract][Full Text] [Related]
30. Countercurrent tangential chromatography for large-scale protein purification. Shinkazh O; Kanani D; Barth M; Long M; Hussain D; Zydney AL Biotechnol Bioeng; 2011 Mar; 108(3):582-91. PubMed ID: 20939008 [TBL] [Abstract][Full Text] [Related]
31. Protein identification by liquid chromatography-mass spectrometry using retention time prediction. Palmblad M; Ramström M; Bailey CG; McCutchen-Maloney SL; Bergquist J; Zeller LC J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Apr; 803(1):131-5. PubMed ID: 15026006 [TBL] [Abstract][Full Text] [Related]
32. Chromatography in the downstream processing of biotechnological products. Freitag R; Horváth C Adv Biochem Eng Biotechnol; 1996; 53():17-59. PubMed ID: 8578972 [TBL] [Abstract][Full Text] [Related]
33. High efficiency, high temperature separations on silica based monolithic columns. Rogeberg M; Wilson SR; Malerod H; Lundanes E; Tanaka N; Greibrokk T J Chromatogr A; 2011 Oct; 1218(41):7281-8. PubMed ID: 21899856 [TBL] [Abstract][Full Text] [Related]
34. Preparation of a novel hydrophobic affinity cryogel for adsorption of lipase and its utilization as a chromatographic adsorbent for fast protein liquid chromatography. Ünlüer ÖB; Özcan A; Uzun L Biotechnol Prog; 2014; 30(2):376-82. PubMed ID: 24376020 [TBL] [Abstract][Full Text] [Related]
35. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins. Martosella J; Zolotarjova N; Liu H; Nicol G; Boyes BE J Proteome Res; 2005; 4(5):1522-37. PubMed ID: 16212403 [TBL] [Abstract][Full Text] [Related]
36. Comparative studies of peak intensities and chromatographic separation of proteolytic digests, PTMs, and intact proteins obtained by nanoLC-ESI MS analysis at room and elevated temperatures. Moskovets EV; Ivanov AR Anal Bioanal Chem; 2016 Jun; 408(15):3953-68. PubMed ID: 26898204 [TBL] [Abstract][Full Text] [Related]
37. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography. Xiao Y; Rathore A; O'Connell JP; Fernandez EJ J Chromatogr A; 2007 Jul; 1157(1-2):197-206. PubMed ID: 17524412 [TBL] [Abstract][Full Text] [Related]
38. Effect of phenyl sepharose ligand density on protein monomer/aggregate purification and separation using hydrophobic interaction chromatography. McCue JT; Engel P; Thömmes J J Chromatogr A; 2009 Feb; 1216(6):902-9. PubMed ID: 19100554 [TBL] [Abstract][Full Text] [Related]
39. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography. Hirsh AG; Tsonev LI J Chromatogr A; 2017 Apr; 1495():22-30. PubMed ID: 28343687 [TBL] [Abstract][Full Text] [Related]
40. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies. Hjertén S; Mohabbati S; Westerlund D J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]