These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9392456)

  • 1. Dichloroacetic acid pretreatment of male and female rats increases chloroform-induced hepatotoxicity.
    Yang HM; Davis ME
    Toxicology; 1997 Dec; 124(1):63-72. PubMed ID: 9392456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dichloroacetic acid pretreatment of male and female rats increases chloroform metabolism in vitro.
    Yang HM; Davis ME
    Toxicology; 1997 Dec; 124(1):53-62. PubMed ID: 9392455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dichloroacetic acid and trichloroacetic acid increase chloroform toxicity.
    Davis ME
    J Toxicol Environ Health; 1992 Sep; 37(1):139-48. PubMed ID: 1522607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dichloroacetic acid treatment increases hepatic CYP2E1 in male and female rats.
    Yang HM; Houser WH; Davis ME
    Toxicol Appl Pharmacol; 1996 Dec; 141(2):382-8. PubMed ID: 8975762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal relationships between biotransformation, detoxication, and chlordecone potentiation of chloroform-induced hepatotoxicity.
    Hewitt LA; Caillé G; Plaa GL
    Can J Physiol Pharmacol; 1986 Apr; 64(4):477-82. PubMed ID: 2425914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-hexanone potentiation of [14C]chloroform hepatotoxicity: covalent interaction of a reactive intermediate with rat liver phospholipid.
    Cowlen MS; Hewitt WR; Schroeder F
    Toxicol Appl Pharmacol; 1984 May; 73(3):478-91. PubMed ID: 6719463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex differences in monochloroacetate pretreatment effects on chloroform toxicity in rats.
    Davis ME; Berndt WO
    Fundam Appl Toxicol; 1992 Jan; 18(1):66-71. PubMed ID: 1601211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of biotransformation-detoxication in acetone-, 2-butanone-, and 2-hexanone-potentiated chloroform-induced hepatotoxicity.
    Hewitt LA; Valiquette C; Plaa GL
    Can J Physiol Pharmacol; 1987 Nov; 65(11):2313-8. PubMed ID: 3449191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of intrarenal biotransformation in chloroform-induced nephrotoxicity in rats.
    Smith JH; Hewitt WR; Hook JB
    Toxicol Appl Pharmacol; 1985 Jun; 79(1):166-74. PubMed ID: 4049404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ketone potentiation of haloalkane-induced hepato- and nephrotoxicity. II. Implication of monooxygenases.
    Raymond P; Plaa GL
    J Toxicol Environ Health; 1995 Nov; 46(3):317-28. PubMed ID: 7473860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NOAEL and LOAEL determinations of acute hepatotoxicity for chloroform and bromodichloromethane delivered in an aqueous vehicle to F344 rats.
    Keegan TE; Simmons JE; Pegram RA
    J Toxicol Environ Health A; 1998 Sep; 55(1):65-75. PubMed ID: 9747604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the involvement of organelles in the mechanism of ketone-potentiated chloroform-induced hepatotoxicity.
    Hewitt LA; Palmason C; Masson S; Plaa GL
    Liver; 1990 Feb; 10(1):35-48. PubMed ID: 2308479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of biotransformation in the potentiation of halocarbon hepatotoxicity by 2,5-hexanedione.
    Jernigan JD; Harbison RD
    J Toxicol Environ Health; 1982; 9(5-6):761-81. PubMed ID: 7120509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies on the hepatotoxic actions of chloroform and related halogenomethanes in normal and phenobarbital-pretreated animals.
    Masuda Y; Yano I; Murano T
    J Pharmacobiodyn; 1980 Jan; 3(1):53-64. PubMed ID: 6259312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms in 2-hexanone potentiation of chloroform hepatotoxicity.
    Cowlen MS; Hewitt WR; Schroeder F
    Toxicol Lett; 1984 Sep; 22(3):293-9. PubMed ID: 6091297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between the carbon skeleton length of ketonic solvents and potentiation of chloroform-induced hepatotoxicity in rats.
    Hewitt WR; Brown EM; Plaa GL
    Toxicol Lett; 1983 May; 16(3-4):297-304. PubMed ID: 6857725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The time course of liver injury and [3H]thymidine incorporation in chlordecone-potentiated CHCl3 hepatotoxicity.
    Mehendale HM; Purushotham KR; Lockard VG
    Exp Mol Pathol; 1989 Aug; 51(1):31-47. PubMed ID: 2475365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose- and route-dependent alteration of metabolism and toxicity of chloroform in fed and fasting rats.
    Wang PY; Kaneko T; Sato A; Charboneau M; Plaa GL
    Toxicol Appl Pharmacol; 1995 Nov; 135(1):119-26. PubMed ID: 7482531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nephrotoxicity and hepatotoxicity of chloroform in mice: effect of deuterium substitution.
    Ahmadizadeh M; Kuo CH; Hook JB
    J Toxicol Environ Health; 1981; 8(1-2):105-11. PubMed ID: 7328696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ketone potentiation of haloalkane-induced hepato- and nephrotoxicity. I. Dose-response relationships.
    Raymond P; Plaa GL
    J Toxicol Environ Health; 1995 Aug; 45(4):465-80. PubMed ID: 7643433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.