BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 939271)

  • 1. Purification and properties of malate dehydrogenase from Thermus aquaticus.
    Biffen JH; Williams RA
    Experientia Suppl; 1976; 26():157-67. PubMed ID: 939271
    [No Abstract]   [Full Text] [Related]  

  • 2. Glyceraldehyde 3-phosphate dehydrogenase from an extreme thermophile, Thermus aquaticus.
    Hocking JD; Harris JI
    Experientia Suppl; 1976; 26():121-33. PubMed ID: 181263
    [No Abstract]   [Full Text] [Related]  

  • 3. Purification and properties of D-glyceraldehyde-3-phosphate dehydrogenase from an extreme thermophile, Thermus thermophilus strain HB 8.
    Fujita SC; Oshima T; Imahori K
    Eur J Biochem; 1976 Apr; 64(1):57-68. PubMed ID: 6270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of a repressible alkaline phosphatase from Thermus aquaticus.
    Yeh MF; Trela JM
    J Biol Chem; 1976 May; 251(10):3134-9. PubMed ID: 5454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutase from Thermus aquaticus. Isolation and characterisation of manganese and apo enzymes.
    Sato S; Harris JI
    Eur J Biochem; 1977 Mar; 73(2):373-81. PubMed ID: 14828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repressible alkaline phosphatase from Thermus aquaticus: associated phosphodiesterase activity.
    Smile DH; Donohue M; Yeh MF; Kenkel T; Trela JM
    J Biol Chem; 1977 May; 252(10):3399-401. PubMed ID: 16900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical and catalytic properties of thermostable malate dehydrogenase from an extreme thermophile Thermus flavus AT-62.
    Iijima S; Saiki T; Beppu T
    Biochim Biophys Acta; 1980; 613(1):1-9. PubMed ID: 6769486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional similarities between mitochondrial malate dehydrogenase and L-3-hydroxyacyl CoA dehydrogenase.
    Noyes BE; Glatthaar BE; Garavelli JS; Bradshaw RA
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1334-8. PubMed ID: 4133851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric and nonallosteric interactions with reduced nicotinamide adenine dinucleotide in two forms of cytoplasmic malic dehydrogenase.
    Cassman M; Vetterlein D
    Biochemistry; 1974 Feb; 13(4):684-9. PubMed ID: 4359464
    [No Abstract]   [Full Text] [Related]  

  • 10. Thermostable polynucleotide phosphorylases from Bacillus stearothermophilus and Thermus aquaticus.
    Wood JN; Hutchinson DW
    Nucleic Acids Res; 1976 Jan; 3(1):219-29. PubMed ID: 1250699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular weight and subunit structure of the malate-lactate transhydrogenase.
    Allen SH
    Eur J Biochem; 1973 Jun; 35(2):338-45. PubMed ID: 4352258
    [No Abstract]   [Full Text] [Related]  

  • 12. Purification and properties of biotinyl-CoA synthetase from Mycoplana sp. No. 166.
    Tanaka M; Yamamoto H; Izumi Y; Yamada H
    Arch Biochem Biophys; 1986 Dec; 251(2):479-86. PubMed ID: 3800379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of the RNA polymerase of an extremely thermophilic bacterium: Thermus aquaticus T2.
    Fábry M; Sümegi J; Venetianer P
    Biochim Biophys Acta; 1976 Jul; 435(3):228-35. PubMed ID: 949494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malate dehydrogenase from thermophilic and mesophilic bacteria. Molecular size, subunit structure, amino acid composition, immunochemical homology, and catalytic activity.
    Sundaram TK; Wright IP; Wilkinson AE
    Biochemistry; 1980 May; 19(10):2017-22. PubMed ID: 6990969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical properties and chemical compositions of cytoplasmic and mitochondrial malate dehydrogenase from Physarum polycephalum.
    Teague WM; Henney HR
    Biochim Biophys Acta; 1976 May; 434(1):118-25. PubMed ID: 945747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization and properties of rat liver malate dehydrogenase (decarboxylating) (NADP).
    Wada F; Numata N; Eguchi Y; Sakamoto Y
    Biochim Biophys Acta; 1975 Dec; 410(2):237-42. PubMed ID: 1203253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct renaturation of the dodecyl sulfate complexes of proteins with Triton X-100.
    Clarke S
    Biochim Biophys Acta; 1981 Sep; 670(2):195-202. PubMed ID: 7295774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FAD-dependent malate dehydrogenase, a phospholipid-requiring enzyme from Mycobacterium sp. strain Takeo. Purification and some properties.
    Imai T
    Biochim Biophys Acta; 1978 Mar; 523(1):37-46. PubMed ID: 629992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the thermostability of enolases.
    Stellwagen E; Barnes LD
    Experientia Suppl; 1976; 26():223-7. PubMed ID: 939273
    [No Abstract]   [Full Text] [Related]  

  • 20. D-galactose dehydrogenase from Pseudomonas saccharophila. Purification, properties and structure.
    Wengenmayer F; Ueberschär KH; Kurz G; Sund H
    Eur J Biochem; 1973 Dec; 40(1):49-61. PubMed ID: 4149284
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.