These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9392859)

  • 1. Using artificial neural networks to classify the activity of capsaicin and its analogues.
    Hosseini M; Madalena DJ; Spence I
    J Chem Inf Comput Sci; 1997; 37(6):1129-37. PubMed ID: 9392859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of receptor properties and binding affinity of ligands to benzodiazepine/GABAA receptors using artificial neural networks.
    Maddalena DJ; Johnston GA
    J Med Chem; 1995 Feb; 38(4):715-24. PubMed ID: 7861419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.
    Zheng F; Bayram E; Sumithran SP; Ayers JT; Zhan CG; Schmitt JD; Dwoskin LP; Crooks PA
    Bioorg Med Chem; 2006 May; 14(9):3017-37. PubMed ID: 16431111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the affinity of the newly synthesised azapirone derivatives for 5-HT1A receptors based on artificial neural network analysis of chromatographic retention data and calculation chemistry parameters.
    Nasal A; Bucinski A; Baczek T; Wojdelko A
    Comb Chem High Throughput Screen; 2004 Jun; 7(4):313-25. PubMed ID: 15200379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural networks for prediction of antibacterial activity in series of imidazole derivatives.
    Bucinski A; Markuszewski MJ; Wiktorowicz W; Krysinski J; Kaliszan R
    Comb Chem High Throughput Screen; 2004 Jun; 7(4):327-36. PubMed ID: 15200380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR.
    Habibi-Yangjeh A; Danandeh-Jenagharad M; Nooshyar M
    J Mol Model; 2006 Feb; 12(3):338-47. PubMed ID: 16344950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase.
    Szaleniec M; Witko M; Tadeusiewicz R; Goclon J
    J Comput Aided Mol Des; 2006 Mar; 20(3):145-57. PubMed ID: 16779618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-agonist activity relationship of capsaicin analogues.
    Klopman G; Li JY
    J Comput Aided Mol Des; 1995 Jun; 9(3):283-94. PubMed ID: 7561979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.
    Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF
    J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective descriptor pruning for QSAR/QSPR studies using artificial neural networks.
    Turner JV; Cutler DJ; Spence I; Maddalena DJ
    J Comput Chem; 2003 May; 24(7):891-7. PubMed ID: 12692798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural networks in prediction of antifungal activity of a series of pyridine derivatives against Candida albicans.
    Buciński A; Socha A; Wnuk M; Baczek T; Nowaczyk A; Krysiński J; Goryński K; Koba M
    J Microbiol Methods; 2009 Jan; 76(1):25-9. PubMed ID: 18824043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm.
    Jalali-Heravi M; Asadollahi-Baboli M; Shahbazikhah P
    Eur J Med Chem; 2008 Mar; 43(3):548-56. PubMed ID: 17602800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretically-derived molecular descriptors important in human intestinal absorption.
    Agatonovic-Kustrin S; Beresford R; Yusof AP
    J Pharm Biomed Anal; 2001 May; 25(2):227-37. PubMed ID: 11275432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural network studies. 2. Variable selection.
    Tetko IV; Villa AE; Livingstone DJ
    J Chem Inf Comput Sci; 1996; 36(4):794-803. PubMed ID: 8768768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarities and differences in the structure-activity relationships of capsaicin and resiniferatoxin analogues.
    Walpole CS; Bevan S; Bloomfield G; Breckenridge R; James IF; Ritchie T; Szallasi A; Winter J; Wrigglesworth R
    J Med Chem; 1996 Jul; 39(15):2939-52. PubMed ID: 8709128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular descriptors that influence the amount of drugs transfer into human breast milk.
    Agatonovic-Kustrin S; Ling LH; Tham SY; Alany RG
    J Pharm Biomed Anal; 2002 Jun; 29(1-2):103-19. PubMed ID: 12062670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of corneal permeability using artificial neural networks.
    Agatonovic-Kustrin S; Evans A; Alany RG
    Pharmazie; 2003 Oct; 58(10):725-9. PubMed ID: 14609285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous modeling of the Kovats retention indices on OV-1 and SE-54 stationary phases using artificial neural networks.
    Fatemi MH
    J Chromatogr A; 2002 May; 955(2):273-80. PubMed ID: 12075931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.