These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9392859)

  • 21. Application of artificial neural networks for the prediction of antitumor activity of a series of acridinone derivatives.
    Koba M
    Med Chem; 2012 May; 8(3):309-19. PubMed ID: 22530901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacokinetic parameter prediction from drug structure using artificial neural networks.
    Turner JV; Maddalena DJ; Cutler DJ
    Int J Pharm; 2004 Feb; 270(1-2):209-19. PubMed ID: 14726136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictive carcinogenicity: a model for aromatic compounds, with nitrogen-containing substituents, based on molecular descriptors using an artificial neural network.
    Gini G; Lorenzini M; Benfenati E; Grasso P; Bruschi M
    J Chem Inf Comput Sci; 1999; 39(6):1076-80. PubMed ID: 10614025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.
    Mendenhall J; Meiler J
    J Comput Aided Mol Des; 2016 Feb; 30(2):177-89. PubMed ID: 26830599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems.
    Ihme M; Marsden AL; Pitsch H
    Neural Comput; 2008 Feb; 20(2):573-601. PubMed ID: 18045024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural networks in building QSAR models.
    Baskin II; Palyulin VA; Zefirov NS
    Methods Mol Biol; 2008; 458():137-58. PubMed ID: 19065809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly correlating distance/connectivity-based topological indices 5. Accurate prediction of liquid density of organic molecules using PCR and PC-ANN.
    Shamsipur M; Ghavami R; Sharghi H; Hemmateenejad B
    J Mol Graph Model; 2008 Nov; 27(4):506-11. PubMed ID: 18948045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial neural network--based analysis of high-throughput screening data for improved prediction of active compounds.
    Chakrabarti S; Svojanovsky SR; Slavik R; Georg GI; Wilson GS; Smith PG
    J Biomol Screen; 2009 Dec; 14(10):1236-44. PubMed ID: 19940083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Training artificial neural networks directly on the concordance index for censored data using genetic algorithms.
    Kalderstam J; Edén P; Bendahl PO; Strand C; Fernö M; Ohlsson M
    Artif Intell Med; 2013 Jun; 58(2):125-32. PubMed ID: 23582884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of 13C nuclear magnetic resonance spectra of lignin compounds using principal component analysis and artificial neural networks.
    Jalali-Heravi M; Masoum S; Shahbazikhah P
    J Magn Reson; 2004 Nov; 171(1):176-85. PubMed ID: 15504698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation.
    Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A
    J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis.
    Fei Y; Hu J; Li WQ; Wang W; Zong GQ
    J Thromb Haemost; 2017 Mar; 15(3):439-445. PubMed ID: 27960048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural network modeling for estimation of the aqueous solubility of structurally related drugs.
    Huuskonen J; Salo M; Taskinen J
    J Pharm Sci; 1997 Apr; 86(4):450-4. PubMed ID: 9109047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative structure-property relationship studies of migration index in microemulsion electrokinetic chromatography using artificial neural network.
    Fatemi MH
    J Chromatogr A; 2003 Jun; 1002(1-2):221-9. PubMed ID: 12885092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.
    Oparaji U; Sheu RJ; Bankhead M; Austin J; Patelli E
    Neural Netw; 2017 Dec; 96():80-90. PubMed ID: 28987979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three new consensus QSAR models for the prediction of Ames genotoxicity.
    Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W
    Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The relationship between the thin-layer chromatographic retention values and the molecular structures of a group of amino acids by using back-propagation artificial neural networks].
    Wang Y; Zhang J; Lin L
    Se Pu; 1999 Jan; 17(1):14-7. PubMed ID: 12548818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of water-phosphatidylcholine membrane partition coefficient of some drugs from their molecular structures.
    Fatemi MH; Moghaddam MR
    Drug Chem Toxicol; 2012 Oct; 35(4):381-8. PubMed ID: 22288947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.