These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9393638)

  • 1. Patch clamp investigation into the phosphate carrier from Saccharomyces cerevisiae mitochondria.
    Herick K; Krämer R; Lühring H
    Biochim Biophys Acta; 1997 Oct; 1321(3):207-20. PubMed ID: 9393638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phosphate carrier from yeast mitochondria. Dimerization is a prerequisite for function.
    Schroers A; Burkovski A; Wohlrab H; Krämer R
    J Biol Chem; 1998 Jun; 273(23):14269-76. PubMed ID: 9603933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine.
    Schroers A; Krämer R; Wohlrab H
    J Biol Chem; 1997 Apr; 272(16):10558-64. PubMed ID: 9099701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride channel properties of the uncoupling protein from brown adipose tissue mitochondria: a patch-clamp study.
    Huang SG; Klingenberg M
    Biochemistry; 1996 Dec; 35(51):16806-14. PubMed ID: 8988019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial carrier proteins can reversibly change their transport mode: the cases of the aspartate/glutamate and the phosphate carrier.
    Krämer R
    Exp Physiol; 1998 Mar; 83(2):259-65. PubMed ID: 9568487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges.
    Ferreira GC; Pedersen PL
    J Bioenerg Biomembr; 1993 Oct; 25(5):483-92. PubMed ID: 8132488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells.
    Baron A; Frieden M; Chabaud F; Bény JL
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):691-706. PubMed ID: 8799892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel properties of the reconstituted chloroplast triose phosphate/phosphate translocator.
    Schwarz M; Gross A; Steinkamp T; Flügge UI; Wagner R
    J Biol Chem; 1994 Nov; 269(47):29481-9. PubMed ID: 7525584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of cytochrome c oxidase-driven H(+)-coupled phosphate transport catalyzed by the Saccharomyces cerevisiae Pho84 permease in coreconstituted vesicles.
    Fristedt U; van Der Rest M; Poolman B; Konings WN; Persson BL
    Biochemistry; 1999 Nov; 38(48):16010-5. PubMed ID: 10625469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replacements of basic and hydroxyl amino acids identify structurally and functionally sensitive regions of the mitochondrial phosphate transport protein.
    Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1999 Apr; 38(16):5096-102. PubMed ID: 10213613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural and azido fatty acids inhibit phosphate transport and activate fatty acid anion uniport mediated by the mitochondrial phosphate carrier.
    Engstová H; Zácková M; Růzicka M; Meinhardt A; Hanus J; Krämer R; Jezek P
    J Biol Chem; 2001 Feb; 276(7):4683-91. PubMed ID: 11085992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the mitochondrial peptide-sensitive cationic channel studied in planar bilayers and patches of giant liposomes.
    Thieffry M; Neyton J; Pelleschi M; Fèvre F; Henry JP
    Biophys J; 1992 Aug; 63(2):333-9. PubMed ID: 1384736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms A and B of the phosphate carrier from bovine mitochondria.
    Fiermonte G; Dolce V; Palmieri F
    J Biol Chem; 1998 Aug; 273(35):22782-7. PubMed ID: 9712911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mrs2p forms a high conductance Mg2+ selective channel in mitochondria.
    Schindl R; Weghuber J; Romanin C; Schweyen RJ
    Biophys J; 2007 Dec; 93(11):3872-83. PubMed ID: 17827224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II activation of Ca(2+)-permeant nonselective cation channels in rat adrenal glomerulosa cells.
    Lotshaw DP; Li F
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1705-15. PubMed ID: 8944655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-channel currents produced by the serotonin transporter and analysis of a mutation affecting ion permeation.
    Lin F; Lester HA; Mager S
    Biophys J; 1996 Dec; 71(6):3126-35. PubMed ID: 8968583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore.
    Brustovetsky N; Tropschug M; Heimpel S; Heidkämper D; Klingenberg M
    Biochemistry; 2002 Oct; 41(39):11804-11. PubMed ID: 12269823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141).
    Wohlrab H; Briggs C
    Biochemistry; 1994 Aug; 33(32):9371-5. PubMed ID: 8068613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of mitochondrial phosphate carrier with fatty acids and hydrophobic phosphate analogs.
    Zácková M; Krämer R; Jezek P
    Int J Biochem Cell Biol; 2000 May; 32(5):499-508. PubMed ID: 10736565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1993 Sep; 268(26):19377-83. PubMed ID: 8366084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.