BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 9393686)

  • 1. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions.
    Larsson C; Nilsson A; Blomberg A; Gustafsson L
    J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
    van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P
    Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catabolic capacity of Saccharomyces cerevisiae is preserved to a higher extent during carbon compared to nitrogen starvation.
    Nilsson A; Påhlman IL; Jovall PA; Blomberg A; Larsson C; Gustafsson L
    Yeast; 2001 Nov; 18(15):1371-81. PubMed ID: 11746599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic 13C-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate.
    Aboka FO; Heijnen JJ; van Winden WA
    FEMS Yeast Res; 2009 Mar; 9(2):191-201. PubMed ID: 19220865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions.
    Larsson C; von Stockar U; Marison I; Gustafsson L
    J Bacteriol; 1993 Aug; 175(15):4809-16. PubMed ID: 8335637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate.
    Guo Z; Olsson L
    FEMS Yeast Res; 2014 Dec; 14(8):1234-48. PubMed ID: 25331461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.
    Thomsson E; Gustafsson L; Larsson C
    Appl Environ Microbiol; 2005 Jun; 71(6):3007-13. PubMed ID: 15932996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Hazelwood LA; Walsh MC; Luttik MA; Daran-Lapujade P; Pronk JT; Daran JM
    Appl Environ Microbiol; 2009 Nov; 75(21):6876-85. PubMed ID: 19734328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of glycogen and trehalose levels in Micromonospora echinospora (ATCC 15837).
    Hoskisson PA; England R; Sharples GP; Hobbs G
    Antonie Van Leeuwenhoek; 2004 Oct; 86(3):225-33. PubMed ID: 15539926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of energy charge and adenine nucleotides during uncoupling of catabolism and anabolism in Penicillium ochrochloron.
    Vrabl P; Mutschlechner W; Burgstaller W
    Mycol Res; 2009 Dec; 113(Pt 12):1422-32. PubMed ID: 19818403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic adjustment upon repetitive substrate perturbations using dynamic
    Suarez-Mendez CA; Ras C; Wahl SA
    Microb Cell Fact; 2017 Sep; 16(1):161. PubMed ID: 28946905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae.
    Guillou V; Plourde-Owobi L; Parrou JL; Goma G; François J
    FEMS Yeast Res; 2004 Sep; 4(8):773-87. PubMed ID: 15450184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae.
    Silljé HH; Paalman JW; ter Schure EG; Olsthoorn SQ; Verkleij AJ; Boonstra J; Verrips CT
    J Bacteriol; 1999 Jan; 181(2):396-400. PubMed ID: 9882651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells.
    Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B
    Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity.
    Abbott DA; van den Brink J; Minneboo IM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):349-57. PubMed ID: 19416100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship of glycolytic intermediates, glycolytic enzymes, and ammonia to glycogen metabolism during sporulation in the yeast Saccharomyces cerevisiae.
    Fonzi WA; Shanley M; Opheim DJ
    J Bacteriol; 1979 Jan; 137(1):285-94. PubMed ID: 368017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae.
    Schulze U; Lidén G; Nielsen J; Villadsen J
    Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():2299-310. PubMed ID: 8760942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor.
    Mashego MR; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2007 Jan; 7(1):48-66. PubMed ID: 17311584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.