BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 9393689)

  • 1. Analysis of the fnrL gene and its function in Rhodobacter capsulatus.
    Zeilstra-Ryalls JH; Gabbert K; Mouncey NJ; Kaplan S; Kranz RG
    J Bacteriol; 1997 Dec; 179(23):7264-73. PubMed ID: 9393689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the FnrL regulon in Rhodobacter capsulatus reveals limited regulon overlap with orthologues from Rhodobacter sphaeroides and Escherichia coli.
    Kumka JE; Bauer CE
    BMC Genomics; 2015 Nov; 16():895. PubMed ID: 26537891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 Nov; 177(22):6422-31. PubMed ID: 7592416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Brake Regulator RedB and FnrL Function as Yin-Yang Regulators of Anaerobic-Aerobic Metabolism in Rhodobacter capsulatus.
    Ke N; Kumka JE; Fang M; Weaver B; Burstyn JN; Bauer CE
    Microbiol Spectr; 2022 Oct; 10(5):e0235422. PubMed ID: 36106752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence and transcriptional analysis of the flanking region of the gene (spb) for the trans-acting factor that controls light-mediated expression of the puf operon in Rhodobacter sphaeroides.
    Mizoguchi H; Masuda T; Nishimura K; Shimada H; Ohta H; Shioi Y; Takamiya K
    Plant Cell Physiol; 1997 May; 38(5):558-67. PubMed ID: 9210332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1996 Feb; 178(4):985-93. PubMed ID: 8576072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and nucleotide sequence of regA, a putative response regulator gene of Rhodobacter sphaeroides.
    Phillips-Jones MK; Hunter CN
    FEMS Microbiol Lett; 1994 Mar; 116(3):269-75. PubMed ID: 8181698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascade regulation of dimethyl sulfoxide reductase (dor) gene expression in the facultative phototroph Rhodobacter sphaeroides 2.4.1T.
    Mouncey NJ; Kaplan S
    J Bacteriol; 1998 Jun; 180(11):2924-30. PubMed ID: 9603883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the fnrL gene in photosystem gene expression and photosynthetic growth of Rhodobacter sphaeroides 2.4.1.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1998 Mar; 180(6):1496-503. PubMed ID: 9515919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides.
    Eraso JM; Kaplan S
    J Bacteriol; 1994 Jan; 176(1):32-43. PubMed ID: 8282708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase.
    Gomelsky M; Kaplan S
    Microbiology (Reading); 1995 Aug; 141 ( Pt 8)():1805-1819. PubMed ID: 7551045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1.
    Gomelsky M; Kaplan S
    J Bacteriol; 1995 Aug; 177(16):4609-18. PubMed ID: 7642486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic analysis of aerobic respiratory and anaerobic photosynthetic states in
    Kumka JE; Schindel H; Fang M; Zappa S; Bauer CE
    Microb Genom; 2017 Sep; 3(9):e000125. PubMed ID: 29114403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides.
    Qian Y; Tabita FR
    J Bacteriol; 1996 Jan; 178(1):12-8. PubMed ID: 8550404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential levels of specific cytochrome c biogenesis proteins in response to oxygen: analysis of the ccl operon in Rhodobacter capsulatus.
    Gabbert KK; Goldman BS; Kranz RG
    J Bacteriol; 1997 Sep; 179(17):5422-8. PubMed ID: 9286996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides.
    Wei W; Liu T; Li X; Wang R; Zhao W; Zhao G; Zhao S; Zhou Z
    Mol Microbiol; 2017 Apr; 104(2):278-293. PubMed ID: 28118511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel membrane-associated c-type cytochrome, cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides.
    Jenney FE; Daldal F
    EMBO J; 1993 Apr; 12(4):1283-92. PubMed ID: 8385603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1.
    Oh JI; Eraso JM; Kaplan S
    J Bacteriol; 2000 Jun; 182(11):3081-7. PubMed ID: 10809685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides.
    Paoli GC; Tabita FR
    Arch Microbiol; 1998 Jul; 170(1):8-17. PubMed ID: 9639598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus.
    Masuda S; Matsumoto Y; Nagashima KV; Shimada K; Inoue K; Bauer CE; Matsuura K
    J Bacteriol; 1999 Jul; 181(14):4205-15. PubMed ID: 10400577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.