BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 9393723)

  • 1. Terminal inverted repeats of insertion sequence IS30 serve as targets for transposition.
    Olasz F; Farkas T; Kiss J; Arini A; Arber W
    J Bacteriol; 1997 Dec; 179(23):7551-8. PubMed ID: 9393723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-terminal sequences modulating IS30 transposition in vivo and in vitro.
    Szabó M; Kiss J; Nagy Z; Chandler M; Olasz F
    J Mol Biol; 2008 Jan; 375(2):337-52. PubMed ID: 18022196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IS30, a new insertion sequence of Escherichia coli K12.
    Caspers P; Dalrymple B; Iida S; Arber W
    Mol Gen Genet; 1984; 196(1):68-73. PubMed ID: 6090868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposition and target specificity of the typical IS30 family element IS1655 from Neisseria meningitidis.
    Kiss J; Nagy Z; Tóth G; Kiss GB; Jakab J; Chandler M; Olasz F
    Mol Microbiol; 2007 Mar; 63(6):1731-47. PubMed ID: 17367392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of the tandem repeat (IS30)2 and its role in IS30-mediated transpositional DNA rearrangements.
    Olasz F; Stalder R; Arber W
    Mol Gen Genet; 1993 May; 239(1-2):177-87. PubMed ID: 8389976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IS1630 of Mycoplasma fermentans, a novel IS30-type insertion element that targets and duplicates inverted repeats of variable length and sequence during insertion.
    Calcutt MJ; Lavrrar JL; Wise KS
    J Bacteriol; 1999 Dec; 181(24):7597-607. PubMed ID: 10601219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the N-terminal DNA binding domain of the IS30 transposase.
    Nagy Z; Szabó M; Chandler M; Olasz F
    Mol Microbiol; 2004 Oct; 54(2):478-88. PubMed ID: 15469518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target specificity of insertion element IS30.
    Olasz F; Kiss J; König P; Buzás Z; Stalder R; Arber W
    Mol Microbiol; 1998 May; 28(4):691-704. PubMed ID: 9643538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and analysis of transpositionally active head-to-tail dimers in three additional Escherichia coli IS elements.
    Szeverényi I; Nagy Z; Farkas T; Olasz F; Kiss J
    Microbiology (Reading); 2003 May; 149(Pt 5):1297-1310. PubMed ID: 12724391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of the inverted repeats of Tn3.
    Nissley DV; Lindh FG; Fennewald MA
    J Mol Biol; 1990 Jun; 213(4):671-6. PubMed ID: 2162965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bias between the left and right inverted repeats during IS911 targeted insertion.
    Rousseau P; Loot C; Turlan C; Nolivos S; Chandler M
    J Bacteriol; 2008 Sep; 190(18):6111-8. PubMed ID: 18586933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional organization of the inverted repeats of IS30.
    Szabó M; Kiss J; Olasz F
    J Bacteriol; 2010 Jul; 192(13):3414-23. PubMed ID: 20418401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of the interaction of the insertion sequence IS903 transposase with its terminal inverted repeats.
    Derbyshire KM; Hwang L; Grindley ND
    Proc Natl Acad Sci U S A; 1987 Nov; 84(22):8049-53. PubMed ID: 2825175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of hotspot targets: a constraint for IS30 transposition in Salmonella.
    Casadesús J; Naas T; Garzón A; Arini A; Torreblanca J; Arber W
    Gene; 1999 Sep; 238(1):231-9. PubMed ID: 10570999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene conversion in transposition of Escherichia coli element IS30.
    Olasz F; Fischer T; Szabó M; Nagy Z; Kiss J
    J Mol Biol; 2003 Dec; 334(5):967-78. PubMed ID: 14643660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The construction and characterization of an effective transpositional system based on IS30.
    Farkas T; Kiss J; Olasz F
    FEBS Lett; 1996 Jul; 390(1):53-8. PubMed ID: 8706828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linearization and transposition of circular molecules of insertion sequence IS3.
    Sekine Y; Aihara K; Ohtsubo E
    J Mol Biol; 1999 Nov; 294(1):21-34. PubMed ID: 10556026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal domain of the insertion sequence 30 transposase interacts specifically with the terminal inverted repeats of the element.
    Stalder R; Caspers P; Olasz F; Arber W
    J Biol Chem; 1990 Mar; 265(7):3757-62. PubMed ID: 2154486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the carboxy-terminal part of IS30 transposase affect the formation and dissolution of (IS30)2 dimer.
    Olasz F; Farkas T; Stalder R; Arber W
    FEBS Lett; 1997 Aug; 413(3):453-61. PubMed ID: 9303555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and transposition of the covalently closed IS30 circle: the relation between tandem dimers and monomeric circles.
    Kiss J; Olasz F
    Mol Microbiol; 1999 Oct; 34(1):37-52. PubMed ID: 10540284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.