BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9393732)

  • 1. Contribution of glucose kinase to glucose repression of xylose utilization in Bacillus megaterium.
    Späth C; Kraus A; Hillen W
    J Bacteriol; 1997 Dec; 179(23):7603-5. PubMed ID: 9393732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolite repression of the xyl operon in Bacillus megaterium.
    Rygus T; Hillen W
    J Bacteriol; 1992 May; 174(9):3049-55. PubMed ID: 1569031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose.
    Schmiedel D; Hillen W
    Mol Gen Genet; 1996 Feb; 250(3):259-66. PubMed ID: 8602140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization.
    Rygus T; Scheler A; Allmansberger R; Hillen W
    Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of glucokinase from Escherichia coli K-12.
    Meyer D; Schneider-Fresenius C; Horlacher R; Peist R; Boos W
    J Bacteriol; 1997 Feb; 179(4):1298-306. PubMed ID: 9023215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of expression, genetic organization and substrate specificity of xylose uptake in Bacillus megaterium.
    Schmiedel D; Kintrup M; Küster E; Hillen W
    Mol Microbiol; 1997 Mar; 23(5):1053-62. PubMed ID: 9076741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum.
    Park SY; Kim HK; Yoo SK; Oh TK; Lee JK
    FEMS Microbiol Lett; 2000 Jul; 188(2):209-15. PubMed ID: 10913707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in catabolite control protein CcpA separating growth effects from catabolite repression.
    Küster E; Hilbich T; Dahl MK; Hillen W
    J Bacteriol; 1999 Jul; 181(13):4125-8. PubMed ID: 10383986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI.
    Wagner A; Küster-Schöck E; Hillen W
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):587-92. PubMed ID: 11075936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon.
    Rygus T; Hillen W
    Appl Microbiol Biotechnol; 1991 Aug; 35(5):594-9. PubMed ID: 1367576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose kinases from Streptomyces peucetius var. caesius.
    Ruiz-Villafán B; Rodríguez-Sanoja R; Aguilar-Osorio G; Gosset G; Sanchez S
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):6061-71. PubMed ID: 24687748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of expression of the Lactobacillus pentosus xylAB operon.
    Lokman BC; Heerikhuisen M; Leer RJ; van den Broek A; Borsboom Y; Chaillou S; Postma PW; Pouwels PH
    J Bacteriol; 1997 Sep; 179(17):5391-7. PubMed ID: 9286992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain.
    Radha S; Gunasekaran P
    J Appl Microbiol; 2007 Oct; 103(4):1301-10. PubMed ID: 17897234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of CcpA mutations defective in carbon catabolite repression in Bacillus megaterium.
    Kraus A; Hillen W
    FEMS Microbiol Lett; 1997 Aug; 153(1):221-6. PubMed ID: 9252590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test systems to study transcriptional regulation and promoter activity in Bacillus megaterium.
    Schmidt S; Wolf N; Strey J; Nahrstedt H; Meinhardt F; Waldeck J
    Appl Microbiol Biotechnol; 2005 Sep; 68(5):647-55. PubMed ID: 15782292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression.
    Angell S; Schwarz E; Bibb MJ
    Mol Microbiol; 1992 Oct; 6(19):2833-44. PubMed ID: 1435260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose kinase-dependent catabolite repression in Staphylococcus xylosus.
    Wagner E; Marcandier S; Egeter O; Deutscher J; Götz F; Brückner R
    J Bacteriol; 1995 Nov; 177(21):6144-52. PubMed ID: 7592379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pleiotropic effect of the SCO2127 gene on the glucose uptake, glucose kinase activity and carbon catabolite repression in Streptomyces peucetius var. caesius.
    Guzmán S; Carmona A; Escalante L; Imriskova I; López R; Rodríguez-Sanoja R; Ruiz B; Servín-González L; Sánchez S; Langley E
    Microbiology (Reading); 2005 May; 151(Pt 5):1717-1723. PubMed ID: 15870479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization.
    Lu J; Tang J; Liu Y; Zhu X; Zhang T; Zhang X
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2455-62. PubMed ID: 22159736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose- and glucokinase-controlled mal gene expression in Escherichia coli.
    Lengsfeld C; Schönert S; Dippel R; Boos W
    J Bacteriol; 2009 Feb; 191(3):701-12. PubMed ID: 19028900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.