These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 9393732)
21. An operator binding-negative mutation of Xyl repressor from Bacillus subtilis is trans dominant in Bacillus megaterium. Kauder C; Allmansberger R; Gärtner D; Schmiedel D; Hillen W FEMS Microbiol Lett; 1993 May; 109(1):81-4. PubMed ID: 8319885 [TBL] [Abstract][Full Text] [Related]
22. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083 [TBL] [Abstract][Full Text] [Related]
23. Mutations in catabolite control protein CcpA showing glucose-independent regulation in Bacillus megaterium. Küster-Schöck E; Wagner A; Völker U; Hillen W J Bacteriol; 1999 Dec; 181(24):7634-8. PubMed ID: 10601226 [TBL] [Abstract][Full Text] [Related]
24. Regulation of formation of proteases in Bacillus megaterium. IV. The formation of the enzyme in the sporogenous strain KM. Din FU; Chaloupka J Folia Microbiol (Praha); 1970; 15(4):267-74. PubMed ID: 4990870 [No Abstract] [Full Text] [Related]
25. Cloning, expression, and carbon catabolite repression of the bamM gene encoding beta-amylase of Bacillus megaterium DSM319. Lee JS; Wittchen KD; Stahl C; Strey J; Meinhardt F Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):205-11. PubMed ID: 11499932 [TBL] [Abstract][Full Text] [Related]
26. mbgA-dependent lactose utilization by Bacillus megaterium. Shaw GC; Chiou CY; Chou YH; Li JM Curr Microbiol; 2002 Feb; 44(2):102-5. PubMed ID: 11815853 [TBL] [Abstract][Full Text] [Related]
27. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. Kraus A; Hueck C; Gärtner D; Hillen W J Bacteriol; 1994 Mar; 176(6):1738-45. PubMed ID: 8132469 [TBL] [Abstract][Full Text] [Related]
28. Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Hori K; Kaneko M; Tanji Y; Xing XH; Unno H Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):211-6. PubMed ID: 12111148 [TBL] [Abstract][Full Text] [Related]
29. Sustained expression of keratinase gene under PxylA and PamyL promoters in the recombinant Bacillus megaterium MS941. Radha S; Gunasekaran P Bioresour Technol; 2008 Sep; 99(13):5528-37. PubMed ID: 18068359 [TBL] [Abstract][Full Text] [Related]
30. Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319. Nahrstedt H; Wittchen K; Rachman MA; Meinhardt F Appl Microbiol Biotechnol; 2004 Apr; 64(2):243-9. PubMed ID: 14593507 [TBL] [Abstract][Full Text] [Related]
31. A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in streptomyces coelicolor A3(2). van Wezel GP; König M; Mahr K; Nothaft H; Thomae AW; Bibb M; Titgemeyer F J Mol Microbiol Biotechnol; 2007; 12(1-2):67-74. PubMed ID: 17183213 [TBL] [Abstract][Full Text] [Related]
32. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. Gärtner D; Geissendörfer M; Hillen W J Bacteriol; 1988 Jul; 170(7):3102-9. PubMed ID: 2454911 [TBL] [Abstract][Full Text] [Related]
33. Dual control of megateriopeptidase synthesis. Chaloupka J Ann Inst Pasteur (Paris); 1969 Nov; 117(5):631-6. PubMed ID: 4983677 [No Abstract] [Full Text] [Related]
34. The Bacillus megaterium comE locus encodes a functional DNA uptake protein. Lammers M; Nahrstedt H; Meinhardt F J Basic Microbiol; 2004; 44(6):451-8. PubMed ID: 15558816 [TBL] [Abstract][Full Text] [Related]
35. Nucleotide sequence of the phosphoglycerate kinase gene from Bacillus megaterium. Schläpfer BS; Branlant C; Branlant G; Zuber H Nucleic Acids Res; 1990 Nov; 18(21):6423. PubMed ID: 2123031 [No Abstract] [Full Text] [Related]
36. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. Barnell WO; Yi KC; Conway T J Bacteriol; 1990 Dec; 172(12):7227-40. PubMed ID: 2254282 [TBL] [Abstract][Full Text] [Related]
37. Induction and carbon catabolite repression in the biosynthesis of beta-amylase by Bacillus megaterium B6. Ray RR; Jana SC; Nanda G Biochem Mol Biol Int; 1996 Feb; 38(2):223-30. PubMed ID: 8850517 [TBL] [Abstract][Full Text] [Related]
38. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germination. Sussman MD; Setlow P J Bacteriol; 1991 Jan; 173(1):291-300. PubMed ID: 1840582 [TBL] [Abstract][Full Text] [Related]
39. Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium. Malten M; Hollmann R; Deckwer WD; Jahn D Biotechnol Bioeng; 2005 Jan; 89(2):206-18. PubMed ID: 15593264 [TBL] [Abstract][Full Text] [Related]
40. Cloning, expression, and catabolite repression of a gene encoding beta-galactosidase of Bacillus megaterium ATCC 14581. Shaw GC; Kao HS; Chiou CY J Bacteriol; 1998 Sep; 180(17):4734-8. PubMed ID: 9721318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]