BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9393732)

  • 21. An operator binding-negative mutation of Xyl repressor from Bacillus subtilis is trans dominant in Bacillus megaterium.
    Kauder C; Allmansberger R; Gärtner D; Schmiedel D; Hillen W
    FEMS Microbiol Lett; 1993 May; 109(1):81-4. PubMed ID: 8319885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S
    BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutations in catabolite control protein CcpA showing glucose-independent regulation in Bacillus megaterium.
    Küster-Schöck E; Wagner A; Völker U; Hillen W
    J Bacteriol; 1999 Dec; 181(24):7634-8. PubMed ID: 10601226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of formation of proteases in Bacillus megaterium. IV. The formation of the enzyme in the sporogenous strain KM.
    Din FU; Chaloupka J
    Folia Microbiol (Praha); 1970; 15(4):267-74. PubMed ID: 4990870
    [No Abstract]   [Full Text] [Related]  

  • 25. Cloning, expression, and carbon catabolite repression of the bamM gene encoding beta-amylase of Bacillus megaterium DSM319.
    Lee JS; Wittchen KD; Stahl C; Strey J; Meinhardt F
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):205-11. PubMed ID: 11499932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mbgA-dependent lactose utilization by Bacillus megaterium.
    Shaw GC; Chiou CY; Chou YH; Li JM
    Curr Microbiol; 2002 Feb; 44(2):102-5. PubMed ID: 11815853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression.
    Kraus A; Hueck C; Gärtner D; Hillen W
    J Bacteriol; 1994 Mar; 176(6):1738-45. PubMed ID: 8132469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production.
    Hori K; Kaneko M; Tanji Y; Xing XH; Unno H
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):211-6. PubMed ID: 12111148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustained expression of keratinase gene under PxylA and PamyL promoters in the recombinant Bacillus megaterium MS941.
    Radha S; Gunasekaran P
    Bioresour Technol; 2008 Sep; 99(13):5528-37. PubMed ID: 18068359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319.
    Nahrstedt H; Wittchen K; Rachman MA; Meinhardt F
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):243-9. PubMed ID: 14593507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in streptomyces coelicolor A3(2).
    van Wezel GP; König M; Mahr K; Nothaft H; Thomae AW; Bibb M; Titgemeyer F
    J Mol Microbiol Biotechnol; 2007; 12(1-2):67-74. PubMed ID: 17183213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose.
    Gärtner D; Geissendörfer M; Hillen W
    J Bacteriol; 1988 Jul; 170(7):3102-9. PubMed ID: 2454911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual control of megateriopeptidase synthesis.
    Chaloupka J
    Ann Inst Pasteur (Paris); 1969 Nov; 117(5):631-6. PubMed ID: 4983677
    [No Abstract]   [Full Text] [Related]  

  • 34. The Bacillus megaterium comE locus encodes a functional DNA uptake protein.
    Lammers M; Nahrstedt H; Meinhardt F
    J Basic Microbiol; 2004; 44(6):451-8. PubMed ID: 15558816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleotide sequence of the phosphoglycerate kinase gene from Bacillus megaterium.
    Schläpfer BS; Branlant C; Branlant G; Zuber H
    Nucleic Acids Res; 1990 Nov; 18(21):6423. PubMed ID: 2123031
    [No Abstract]   [Full Text] [Related]  

  • 36. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism.
    Barnell WO; Yi KC; Conway T
    J Bacteriol; 1990 Dec; 172(12):7227-40. PubMed ID: 2254282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction and carbon catabolite repression in the biosynthesis of beta-amylase by Bacillus megaterium B6.
    Ray RR; Jana SC; Nanda G
    Biochem Mol Biol Int; 1996 Feb; 38(2):223-30. PubMed ID: 8850517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germination.
    Sussman MD; Setlow P
    J Bacteriol; 1991 Jan; 173(1):291-300. PubMed ID: 1840582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium.
    Malten M; Hollmann R; Deckwer WD; Jahn D
    Biotechnol Bioeng; 2005 Jan; 89(2):206-18. PubMed ID: 15593264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning, expression, and catabolite repression of a gene encoding beta-galactosidase of Bacillus megaterium ATCC 14581.
    Shaw GC; Kao HS; Chiou CY
    J Bacteriol; 1998 Sep; 180(17):4734-8. PubMed ID: 9721318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.