These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9393732)

  • 41. Bacillus subtilis GlcK activity requires cysteines within a motif that discriminates microbial glucokinases into two lineages.
    Mesak LR; Mesak FM; Dahl MK
    BMC Microbiol; 2004 Feb; 4():6. PubMed ID: 15018644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glucokinase contributes to glucose phosphorylation in D-lactic acid production by Sporolactobacillus inulinus Y2-8.
    Zheng L; Bai Z; Xu T; He B
    J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1685-92. PubMed ID: 22892885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level.
    Sizemore C; Wieland B; Götz F; Hillen W
    J Bacteriol; 1992 May; 174(9):3042-8. PubMed ID: 1569030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of a lactose-responsive element upstream of the promoter of Bacillus megaterium beta-galactosidase-encoding gene mbgA.
    Li JM; Chiou CY; Lee TR; Chen YS; Shaw GC
    Curr Microbiol; 2005 Jul; 51(1):31-4. PubMed ID: 15971092
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus.
    Wong HC; Ting Y; Lin HC; Reichert F; Myambo K; Watt KW; Toy PL; Drummond RJ
    J Bacteriol; 1991 Nov; 173(21):6849-58. PubMed ID: 1657868
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The properties and potential metabolic role of glucokinase in halotolerant obligate methanotroph Methylomicrobium alcaliphilum 20Z.
    Mustakhimov II; Rozova ON; Solntseva NP; Khmelenina VN; Reshetnikov AS; Trotsenko YA
    Antonie Van Leeuwenhoek; 2017 Mar; 110(3):375-386. PubMed ID: 27915410
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amino acid stimulation of proteinase synthesis in a sporogenous Bacillus megaterium KM.
    Din FU; Chaloupka J
    Biochem Biophys Res Commun; 1969 Oct; 37(2):233-8. PubMed ID: 4980921
    [No Abstract]   [Full Text] [Related]  

  • 49. Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030.
    Nagao T; Mitamura T; Wang XH; Negoro S; Yomo T; Urabe I; Okada H
    J Bacteriol; 1992 Aug; 174(15):5013-20. PubMed ID: 1629157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Netropsin increases formation of mRNA coding for a neutral metalloproteinase in Bacillus megaterium.
    Chaloupka J; Kucerová H
    J Basic Microbiol; 1988; 28(1-2):11-6. PubMed ID: 2845047
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor.
    Kwakman JH; Postma PW
    J Bacteriol; 1994 May; 176(9):2694-8. PubMed ID: 8169219
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium.
    Xu H; Qin Y; Huang Z; Liu Z
    Enzyme Microb Technol; 2014 Mar; 56():46-52. PubMed ID: 24564902
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation of a Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterium from compost, and cloning and characterization of a gene encoding PHB depolymerase of Bacillus megaterium N-18-25-9.
    Takaku H; Kimoto A; Kodaira S; Nashimoto M; Takagi M
    FEMS Microbiol Lett; 2006 Nov; 264(2):152-9. PubMed ID: 17064368
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleotide sequence of an amylase gene from Bacillus megaterium.
    Metz RJ; Allen LN; Cao TM; Zeman NW
    Nucleic Acids Res; 1988 Jun; 16(11):5203. PubMed ID: 2455281
    [No Abstract]   [Full Text] [Related]  

  • 56. Phosphotransbutyrylase expression in Bacillus megaterium.
    Vazquez GJ; Pettinari MJ; Méndez BS
    Curr Microbiol; 2001 May; 42(5):345-9. PubMed ID: 11400055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissecting the role of the two Streptomyces peucetius var. caesius glucokinases in the sensitivity to carbon catabolite repression.
    Diana RM; Monserrat MR; Alba RR; Beatriz RV; Romina RS; Sergio SE
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34383077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. spoVG sequence of Bacillus megaterium and Bacillus subtilis (Biochim. Biophys. Acta Vol. 1130, No. 2 (1992) 229-231 (BBAEXP 90336)).
    Hudspeth DS; Vary PS
    Biochim Biophys Acta; 1993 Dec; 1216(3):509. PubMed ID: 7916646
    [No Abstract]   [Full Text] [Related]  

  • 59. The glucose kinase gene of Streptomyces coelicolor is not required for glucose repression of the chi63 promoter.
    Ingram C; Westpheling J
    J Bacteriol; 1995 Jun; 177(12):3587-8. PubMed ID: 7768870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways.
    del Castillo T; Ramos JL
    J Bacteriol; 2007 Sep; 189(18):6602-10. PubMed ID: 17616587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.