These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 9393914)
1. Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. Baumgaertner MR; Solberg BD J Bone Joint Surg Br; 1997 Nov; 79(6):969-71. PubMed ID: 9393914 [TBL] [Abstract][Full Text] [Related]
2. Traditional distance "tip-apex" vs. new calcar referenced "tip-apex" - which one is the best peritrochanteric osteosynthesis failure predictor? Lopes-Coutinho L; Dias-Carvalho A; Esteves N; Sousa R Injury; 2020 Mar; 51(3):674-677. PubMed ID: 31983422 [TBL] [Abstract][Full Text] [Related]
3. A mathematical simulation of the tip-apex distance and the calcar-referenced tip-apex distance for intertrochanteric fractures reduced with lag screws. Li S; Chang SM; Jin YM; Zhang YQ; Niu WX; Du SC; Zhang LZ; Ma H Injury; 2016 Jun; 47(6):1302-8. PubMed ID: 27087281 [TBL] [Abstract][Full Text] [Related]
4. Risk factors for cut-out of double lag screw fixation in proximal femoral fractures. Buyukdogan K; Caglar O; Isik S; Tokgozoglu M; Atilla B Injury; 2017 Feb; 48(2):414-418. PubMed ID: 27889112 [TBL] [Abstract][Full Text] [Related]
5. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. Cool P J Bone Joint Surg Am; 1996 Sep; 78(9):1447; author reply 1447-8. PubMed ID: 8816666 [No Abstract] [Full Text] [Related]
6. Prediction of fixation failure after sliding hip screw fixation. Pervez H; Parker MJ; Vowler S Injury; 2004 Oct; 35(10):994-8. PubMed ID: 15351665 [TBL] [Abstract][Full Text] [Related]
7. Risk factors for cut-out after internal fixation of trochanteric fractures in elderly subjects. Morvan A; Boddaert J; Cohen-Bittan J; Picard H; Pascal-Mousselard H; Khiami F Orthop Traumatol Surg Res; 2018 Dec; 104(8):1183-1187. PubMed ID: 30342858 [TBL] [Abstract][Full Text] [Related]
8. Intraoperative lateral wall fractures during Dynamic Hip Screw fixation for intertrochanteric fractures-Incidence, causative factors and clinical outcome. Pradeep AR; KiranKumar A; Dheenadhayalan J; Rajasekaran S Injury; 2018 Feb; 49(2):334-338. PubMed ID: 29173962 [TBL] [Abstract][Full Text] [Related]
9. Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement. Kane P; Vopat B; Heard W; Thakur N; Paller D; Koruprolu S; Born C Clin Orthop Relat Res; 2014 Aug; 472(8):2492-8. PubMed ID: 24760583 [TBL] [Abstract][Full Text] [Related]
10. Optimising the tip-apex-distance in trochanteric femoral fracture fixation using the ADAPT-navigated technique, a longitudinal matched cohort study. Herzog J; Wendlandt R; Hillbricht S; Burgkart R; Schulz AP Injury; 2019 Mar; 50(3):744-751. PubMed ID: 30782395 [TBL] [Abstract][Full Text] [Related]
11. 130- versus 135-degree sliding hip screws and failure in pertrochanteric hip fractures. Radic R; Yates PJ; Lim TS; Burrows S ANZ J Surg; 2014 Dec; 84(12):949-54. PubMed ID: 24898151 [TBL] [Abstract][Full Text] [Related]
12. Outcomes of dynamic hip screw augmented with trochanteric wiring for treatment of unstable type A2 intertrochanteric femur fractures. Puram C; Pradhan C; Patil A; Sodhai V; Sancheti P; Shyam A Injury; 2017 Aug; 48 Suppl 2():S72-S77. PubMed ID: 28802425 [TBL] [Abstract][Full Text] [Related]
13. Reliability of predictors for screw cutout in intertrochanteric hip fractures. De Bruijn K; den Hartog D; Tuinebreijer W; Roukema G J Bone Joint Surg Am; 2012 Jul; 94(14):1266-72. PubMed ID: 22810396 [TBL] [Abstract][Full Text] [Related]
14. Intertrochanteric fracture: Association between the coronal position of the lag screw and stress distribution. Liang C; Peng R; Jiang N; Xie G; Wang L; Yu B Asian J Surg; 2018 May; 41(3):241-249. PubMed ID: 28366494 [TBL] [Abstract][Full Text] [Related]
15. The trochanteric nail versus the sliding hip screw for intertrochanteric hip fractures: a review of 93 cases. Crawford CH; Malkani AL; Cordray S; Roberts CS; Sligar W J Trauma; 2006 Feb; 60(2):325-8; discussion 328-9. PubMed ID: 16508490 [TBL] [Abstract][Full Text] [Related]
16. Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. Andruszkow H; Frink M; Frömke C; Matityahu A; Zeckey C; Mommsen P; Suntardjo S; Krettek C; Hildebrand F Int Orthop; 2012 Nov; 36(11):2347-54. PubMed ID: 23011721 [TBL] [Abstract][Full Text] [Related]
17. Prevention of unrecognized joint penetration during internal fixation of hip fractures: a geometric model based on Steinmetz Solid. Mao Y; Song J; Wei J; Wang M Hip Int; 2010; 20(4):547-50. PubMed ID: 21157763 [TBL] [Abstract][Full Text] [Related]
18. Radiographic and functional results of osteosynthesis using the proximal femoral nail antirotation (PFNA) in the treatment of unstable intertrochanteric femoral fractures. Sahin S; Ertürer E; Oztürk I; Toker S; Seçkin F; Akman S Acta Orthop Traumatol Turc; 2010; 44(2):127-34. PubMed ID: 20676015 [TBL] [Abstract][Full Text] [Related]
19. The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study. Goffin JM; Pankaj P; Simpson AH J Orthop Res; 2013 Apr; 31(4):596-600. PubMed ID: 23138576 [TBL] [Abstract][Full Text] [Related]
20. Importance of screw position in intertrochanteric femoral fractures treated by dynamic hip screw. Güven M; Yavuz U; Kadioğlu B; Akman B; Kilinçoğlu V; Unay K; Altintaş F Orthop Traumatol Surg Res; 2010 Feb; 96(1):21-7. PubMed ID: 20170854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]