These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 9394290)

  • 1. What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review).
    Durell SR; Martin I; Ruysschaert JM; Shai Y; Blumenthal R
    Mol Membr Biol; 1997; 14(3):97-112. PubMed ID: 9394290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common properties of fusion peptides from diverse systems.
    Martin I; Ruysschaert JM
    Biosci Rep; 2000 Dec; 20(6):483-500. PubMed ID: 11426690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior to membrane fusion.
    Nomura F; Inaba T; Ishikawa S; Nagata M; Takahashi S; Hotani H; Takiguchi K
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3420-5. PubMed ID: 14988507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers.
    Han X; Tamm LK
    J Mol Biol; 2000 Dec; 304(5):953-65. PubMed ID: 11124039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion.
    Li Y; Han X; Lai AL; Bushweller JH; Cafiso DS; Tamm LK
    J Virol; 2005 Sep; 79(18):12065-76. PubMed ID: 16140782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanisms of lipid-protein rearrangements during viral infection.
    Chizmadzhev YA
    Bioelectrochemistry; 2004 Jun; 63(1-2):129-36. PubMed ID: 15110263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides.
    Kordyukova L
    Virus Res; 2017 Jan; 227():183-199. PubMed ID: 27773768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-Dependent Membrane Ordering by Hemagglutinin Fusion Peptide Promotes Fusion.
    Chakraborty H; Lentz BR; Kombrabail M; Krishnamoorthy G; Chattopadhyay A
    J Phys Chem B; 2017 Feb; 121(7):1640-1648. PubMed ID: 28125233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of membrane sidedness to the effects of the lipophosphoglycan of Leishmania donovani on the fusion of influenza virus.
    Razinkov V; Martin I; Turco SJ; Cohen FS; Ruysschaert JM; Epand RM
    Eur J Biochem; 1999 Jun; 262(3):890-9. PubMed ID: 10411653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemagglutinin fusion peptide mutants in model membranes: structural properties, membrane physical properties, and PEG-mediated fusion.
    Haque ME; Chakraborty H; Koklic T; Komatsu H; Axelsen PH; Lentz BR
    Biophys J; 2011 Sep; 101(5):1095-104. PubMed ID: 21889446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sendai virus internal fusion peptide: structural and functional characterization and a plausible mode of viral entry inhibition.
    Ghosh JK; Peisajovich SG; Shai Y
    Biochemistry; 2000 Sep; 39(38):11581-92. PubMed ID: 10995225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: probing the role of hydrophobic residue size in the central region of the fusion peptide.
    Han X; Steinhauer DA; Wharton SA; Tamm LK
    Biochemistry; 1999 Nov; 38(45):15052-9. PubMed ID: 10555988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers.
    Gray C; Tatulian SA; Wharton SA; Tamm LK
    Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion activity of transmembrane and cytoplasmic domain chimeras of the influenza virus glycoprotein hemagglutinin.
    Schroth-Diez B; Ponimaskin E; Reverey H; Schmidt MF; Herrmann A
    J Virol; 1998 Jan; 72(1):133-41. PubMed ID: 9420208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes.
    Pritsker M; Rucker J; Hoffman TL; Doms RW; Shai Y
    Biochemistry; 1999 Aug; 38(35):11359-71. PubMed ID: 10471286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biology of the influenza virus fusion peptide.
    Worch R
    Acta Biochim Pol; 2014; 61(3):421-6. PubMed ID: 25195144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of fusion peptide-membrane interactions.
    Li Y; Han X; Tamm LK
    Biochemistry; 2003 Jun; 42(23):7245-51. PubMed ID: 12795621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane fusion: the influenza paradigm.
    White JM
    Cold Spring Harb Symp Quant Biol; 1995; 60():581-8. PubMed ID: 8824431
    [No Abstract]   [Full Text] [Related]  

  • 19. Participation of two fusion peptides in measles virus-induced membrane fusion: emerging similarity with other paramyxoviruses.
    Samuel O; Shai Y
    Biochemistry; 2001 Feb; 40(5):1340-9. PubMed ID: 11170461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin.
    Tatulian SA; Tamm LK
    Biochemistry; 2000 Jan; 39(3):496-507. PubMed ID: 10642174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.