These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9394405)

  • 1. A study of thyroid radioiodine monitoring by Monte Carlo simulations: implications for equipment design.
    Kramer GH; Chamberlain MJ; Yiu S
    Phys Med Biol; 1997 Nov; 42(11):2175-82. PubMed ID: 9394405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The assessment of the effect of thyroid size and shape on the activity estimate using Monte Carlo simulation.
    Kramer GH; Crowley P
    Health Phys; 2000 Jun; 78(6):727-38. PubMed ID: 10832935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of counting efficiencies of a portable NaI detector using Monte Carlo simulation for thyroid measurement following nuclear accidents.
    Ha WH; Kim JK; Jin YW
    J Radiol Prot; 2017 Sep; 37(3):635-641. PubMed ID: 28474600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counting efficiency of whole-body monitoring system using BOMAB and ANSI/IAEA thyroid phantom due to internal contamination of 131I.
    Ghare VP; Patni HK; Akar DK; Rao DD
    Radiat Prot Dosimetry; 2014 Dec; 162(3):230-5. PubMed ID: 24179144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte-Carlo simulation of uncertainty in the estimation of 125I in the thyroid.
    Bhati S; Patni HK
    Radiat Prot Dosimetry; 2009 Aug; 136(1):23-9. PubMed ID: 19689965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of the effect of counting geometry on 125I monitoring using MCNP.
    Kramer GH; Yiu S
    Health Phys; 1997 Mar; 72(3):465-70. PubMed ID: 9030849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability of radioiodine measurements in the thyroid.
    Damet J; Bochud FO; Bailat C; Laedermann JP; Baechler S
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):326-9. PubMed ID: 20959333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counting Efficiencies Determined by Monte Carlo Methods for In Vivo Measurement of 131I Activity in Thyroid.
    Park M; Kwon TE; Ha WH; Kim CH; Park S; Jin YW
    Health Phys; 2019 Oct; 117(4):388-395. PubMed ID: 30913058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCNP SIMULATIONS WITH A PERSONALISED VOXEL PHANTOM TO VERIFY 131I CONTENT IN THYROID ESTIMATED BASED ON MEASUREMENTS WITH AN NaI(Tl) SPECTROMETER.
    Tani K; Kunishima N; Igarashi Y; Kim E; Iimoto T; Kurihara O
    Radiat Prot Dosimetry; 2019 Dec; 185(3):402-408. PubMed ID: 30806469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. METHODOLOGY AT CIEMAT WHOLE BODY COUNTER FOR IN VIVO MONITORING OF RADIOIODINE IN THE THYROID OF EXPOSED POPULATION IN CASE OF NUCLEAR EMERGENCY.
    Pérez López B; Navarro JF; López MA
    Radiat Prot Dosimetry; 2018 Dec; 182(2):171-176. PubMed ID: 29584908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NUMERICAL SIMULATION OF DIRECT MEASUREMENT TO DETERMINE THYROID 131I CONTENT OF TWO TEPCO WORKERS CONSIDERING INDIVIDUAL TISSUE THICKNESS.
    Tani K; Kurihara O; Kim E; Sakai K; Akashi M
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):373-6. PubMed ID: 26868011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of systematic errors in thyroid monitoring.
    Venturini L
    Radiat Prot Dosimetry; 2003; 103(1):63-8. PubMed ID: 12596991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainties in determination of 131I activity in thyroid gland.
    Ośko J; Golnik N; Pliszczynski T
    Radiat Prot Dosimetry; 2007; 125(1-4):516-9. PubMed ID: 17309877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GATE based Monte Carlo simulation of planar scintigraphy to estimate the nodular dose in radioiodine therapy for autonomous thyroid adenoma.
    Hammes J; Pietrzyk U; Schmidt M; Schicha H; Eschner W
    Z Med Phys; 2011 Dec; 21(4):290-300. PubMed ID: 21983024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of measurement geometry on the estimate of 131(I) activity in the thyroid: Monte Carlo simulation of a detector and a phantom.
    Ulanovsky AV; Minenko VF; Korneev SV
    Health Phys; 1997 Jan; 72(1):34-41. PubMed ID: 8972824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring and Dose Assessment for Children Following a Radiation Emergency-Part II: Calibration Factors for Thyroid Monitoring.
    Li C; Tremblay M; Capello K; Kurihara O; Youngman M; Etherington G; Ansari A; López MA; Franck D; Dewji S
    Health Phys; 2019 Sep; 117(3):283-290. PubMed ID: 30907781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance assessment and uncertainty evaluation of a portable NaI-based detection system used for thyroid monitoring.
    Bento J; Martins B; Teles P; Neves M; Colarinha P; Alves F; Teixeira N; Vaz P; Zankl M
    Radiat Prot Dosimetry; 2012 Aug; 151(2):252-61. PubMed ID: 22345216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination From Intakes of Radionuclides Part I: Field Tests and Monte Carlo Simulations.
    Anigstein R; Erdman MC; Ansari A
    Health Phys; 2016 Jun; 110(6):612-22. PubMed ID: 27115229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NUMERICAL ASSESSMENT OF 131I DEPOSITED IN THYROID FOR NON-STANDARD SITUATIONS.
    Moraleda M; Gómez-Ros JM
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):364-8. PubMed ID: 26705352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo calculations for efficiency calibration of a whole-body monitor using BOMAB phantoms of different sizes.
    Bhati S; Patni HK; Ghare VP; Singh IS; Nadar MY
    Radiat Prot Dosimetry; 2012 Mar; 148(4):414-9. PubMed ID: 21531750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.