These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9394673)

  • 1. Correlation of T1 and T2 relaxation rates in normal bone-marrow water with serum ferritin concentration.
    Ishizaka H; Ishijima H
    Acta Radiol; 1997 Nov; 38(6):1076-8. PubMed ID: 9394673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T2 relaxation time of bone marrow water and lipid: correlation with serum ferritin in normal individuals.
    Ishijima H; Ishizaka H; Aoki J; Inoue T; Endo K
    J Comput Assist Tomogr; 1997; 21(3):506-8. PubMed ID: 9135666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of bone marrow iron by magnetic resonance imaging.
    Isokawa M; Kimura F; Matsuki T; Omoto E; Otsuka K; Kurokawa H; Togami I; Hiraki Y; Kimura I; Harada M
    Ann Hematol; 1997 Jun; 74(6):269-74. PubMed ID: 9236511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breath-hold MR measurements of fat fraction, T1 , and T2 * of water and fat in vertebral bone marrow.
    Le Ster C; Gambarota G; Lasbleiz J; Guillin R; Decaux O; Saint-Jalmes H
    J Magn Reson Imaging; 2016 Sep; 44(3):549-55. PubMed ID: 26918280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic contrast-enhanced MR imaging of the water fraction of normal bone marrow and diffuse bone marrow disease.
    Katsuya T; Inoue T; Ishizaka H; Aoki J; Endo K
    Radiat Med; 2000; 18(5):291-7. PubMed ID: 11128399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results.
    de Bazelaire CM; Duhamel GD; Rofsky NM; Alsop DC
    Radiology; 2004 Mar; 230(3):652-9. PubMed ID: 14990831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The need for T₂ correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence.
    Dieckmeyer M; Ruschke S; Cordes C; Yap SP; Kooijman H; Hauner H; Rummeny EJ; Bauer JS; Baum T; Karampinos DC
    NMR Biomed; 2015 Apr; 28(4):432-9. PubMed ID: 25683154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex.
    Ishijima H; Ishizaka H; Horikoshi H; Sakurai M
    AJR Am J Roentgenol; 1996 Aug; 167(2):355-8. PubMed ID: 8686603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast method for the quantification of fat fraction and relaxation times: Comparison of five sites of bone marrow.
    Le Ster C; Lasbleiz J; Kannengiesser S; Guillin R; Gambarota G; Saint-Jalmes H
    Magn Reson Imaging; 2017 Jun; 39():157-161. PubMed ID: 28263827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological variation of the vertebral bone marrow water T2 relaxation time.
    Ruschke S; Syväri J; Dieckmeyer M; Junker D; Makowski MR; Baum T; Karampinos DC
    NMR Biomed; 2021 Feb; 34(2):e4439. PubMed ID: 33205520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow imaging: magnetic resonance studies related to age and sex.
    Dooms GC; Fisher MR; Hricak H; Richardson M; Crooks LE; Genant HK
    Radiology; 1985 May; 155(2):429-32. PubMed ID: 3983394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The usefulness of serum transferrin receptor and ferritin for assessing anemia in rheumatoid arthritis: comparison with bone marrow iron study.
    Song JS; Park W; Bae SK; Kim SS; Lee YH; Choi JW; Kim SK
    Rheumatol Int; 2001 Sep; 21(1):24-9. PubMed ID: 11678299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of T2* decay in vertebral bone marrow fat quantification.
    Karampinos DC; Ruschke S; Dieckmeyer M; Eggers H; Kooijman H; Rummeny EJ; Bauer JS; Baum T
    NMR Biomed; 2015 Nov; 28(11):1535-42. PubMed ID: 26423583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum ferritin and bone marrow iron stores. I. Correlation with absence of iron in biopsy specimens.
    Krause JR; Stolc V
    Am J Clin Pathol; 1979 Nov; 72(5):817-20. PubMed ID: 506995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI evaluation of bone marrow of normal lumbar vertebra in the Chinese: normal patterns and preliminary quantitative study.
    Wu Z; Yang B; Pan S; Chen Z
    Chin Med J (Engl); 1999 Jul; 112(7):646-8. PubMed ID: 11601262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of 1H relaxation times of water in human bone marrow by fat-suppressed turbo spin echo in comparison to MR spectroscopic methods.
    Träber F; Block W; Layer G; Bräucker G; Gieseke J; Kretzer S; Hasan I; Schild HH
    J Magn Reson Imaging; 1996; 6(3):541-8. PubMed ID: 8724421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies.
    Majumdar S; Thomasson D; Shimakawa A; Genant HK
    Magn Reson Med; 1991 Nov; 22(1):111-27. PubMed ID: 1798386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and qualitative assessment of reactive hematopoietic bone marrow in aplastic anemia using MR spectroscopy with variable echo times.
    Amano Y; Kumazaki T
    Skeletal Radiol; 2002 Jan; 31(1):19-24. PubMed ID: 11807588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging.
    Kaltwasser JP; Gottschalk R; Schalk KP; Hartl W
    Br J Haematol; 1990 Mar; 74(3):360-3. PubMed ID: 2334643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of the magnetic field in the spine depends on the composition of bone marrow.
    Schick F
    J Magn Reson B; 1995 Jul; 108(1):1-11. PubMed ID: 7627431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.