These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 9395040)
1. Velocity measurements within confined turbulent jets: application to cardiovalvular regurgitation. Liu H; Winoto SH; Shah DA Ann Biomed Eng; 1997; 25(6):939-48. PubMed ID: 9395040 [TBL] [Abstract][Full Text] [Related]
2. A method of measuring the peak flow rate and the regurgitant volume of regurgitation based on the characteristics of turbulent free jets. Sugawara M; Hirai A; Seo Y; Miyajima Y; Uchibori T Front Med Biol Eng; 1991; 3(1):45-55. PubMed ID: 1854673 [TBL] [Abstract][Full Text] [Related]
3. How sensitive are jet centerline velocities to an opposing flow? Implications for using the centerline method to quantify regurgitant jet flow. Grimes RY; Hopmeyer J; Cape EG; Levine RA; Yoganathan AP J Biomech; 1996 Jul; 29(7):967-71. PubMed ID: 8809628 [TBL] [Abstract][Full Text] [Related]
4. A new method for noninvasive quantification of valvular regurgitation based on conservation of momentum. In vitro validation. Cape EG; Skoufis EG; Weyman AE; Yoganathan AP; Levine RA Circulation; 1989 Jun; 79(6):1343-53. PubMed ID: 2720933 [TBL] [Abstract][Full Text] [Related]
5. Fluid mechanics of regurgitant jets and calculation of the effective regurgitant orifice in free or complex configurations. Diebold B; Delouche A; Decesare A; Delouche P; Guglielmi JP; Herment A J Biomech; 2000 Jun; 33(6):677-84. PubMed ID: 10807988 [TBL] [Abstract][Full Text] [Related]
6. Estimation of turbulent shear stress in free jets: application to valvular regurgitation. Winoto SH; Shah DA; Liu H Ann Biomed Eng; 1996; 24(2):321-7. PubMed ID: 8678361 [TBL] [Abstract][Full Text] [Related]
7. Quantification of Mitral and Tricuspid Regurgitation Using Jet Centerline Velocities: An In Vitro Study of Jets in an Ambient Counterflow. Grimes RY; Hopmeyer J; Cape EG; Yoganathan AP; Levine RA Echocardiography; 1996 Jul; 13(4):357-372. PubMed ID: 11442942 [TBL] [Abstract][Full Text] [Related]
8. Quasisteady behavior of pulsatile, confined, counterflowing jets: implications for the assessment of mitral and tricuspid regurgitation. Grimes RY; Pulido GA; Levine RA; Yoganathan AP J Biomech Eng; 1996 Nov; 118(4):498-505. PubMed ID: 8950653 [TBL] [Abstract][Full Text] [Related]
9. Quantitative assessment of in vitro jets based on three-dimensional color Doppler reconstruction. Guo Z; Boughner DR; Dietrich JM; Pflugfelder PW; Durand LG; Loew M; Fenster A Ultrasound Med Biol; 2001 Feb; 27(2):235-43. PubMed ID: 11316532 [TBL] [Abstract][Full Text] [Related]
10. A model based on dimensional analysis for noninvasive quantification of valvular regurgitation under confined and impinging conditions: in vitro pulsatile flow validation. Burleson AC; N'Guyen T; Fontaine A; Levine RA; Yoganathan AP Ultrasound Med Biol; 1995; 21(7):899-911. PubMed ID: 7491745 [TBL] [Abstract][Full Text] [Related]
11. Jet flow in steadily swimming adult squid. Anderson EJ; Grosenbaugh MA J Exp Biol; 2005 Mar; 208(Pt 6):1125-46. PubMed ID: 15767313 [TBL] [Abstract][Full Text] [Related]
12. A new theoretical model for noninvasive quantification of mitral regurgitation. Cape EG; Yoganathan AP; Levine RA J Biomech; 1990; 23(1):27-33. PubMed ID: 2307689 [TBL] [Abstract][Full Text] [Related]
13. Effect of heart rate on centerline velocities of pulsatile intracardiac jets: an in vitro study with laser Doppler anemometry and pulsed Doppler ultrasound. Cagniot A; Cape EG; Walker PG; Yoganathan AP; Levine RA J Am Soc Echocardiogr; 1992; 5(4):393-404. PubMed ID: 1387317 [TBL] [Abstract][Full Text] [Related]
14. A model based on dimensional analysis for non-invasive quantification of valvular regurgitation under confined and impinging conditions. Burleson AG; Levine RA; Yoganathan AP J Biomech; 1996 Jan; 29(1):99-102. PubMed ID: 8839022 [TBL] [Abstract][Full Text] [Related]
15. Atrial inflow can alter regurgitant jet size: in vitro studies. Grimes RY; Nyarko SJ; Pulido GA; Yang S; Walker PG; Levine RA; Yoganathan AP Ultrasound Med Biol; 1995; 21(4):459-69. PubMed ID: 7571139 [TBL] [Abstract][Full Text] [Related]
16. Impact of orifice geometry on the shape of jets: an in vitro Doppler color flow study. Thomas JD; O'Shea JP; Rodriguez L; Popovic AD; Svizerro T; Weyman AE J Am Coll Cardiol; 1991 Mar; 17(4):901-8. PubMed ID: 1999627 [TBL] [Abstract][Full Text] [Related]
17. [Color Doppler echocardiography of the flow convergence region in vitro: effect of the orifice shape on proximal velocity profile]. Giesler M; Grossmann G; Pfob A; Bajtay D; Goller V; Hombach V Z Kardiol; 1996 Jan; 85(1):45-52. PubMed ID: 8717147 [TBL] [Abstract][Full Text] [Related]
18. Factors influencing pulmonary venous flow velocity patterns in mitral regurgitation: an in vitro study. Passafini A; Shiota T; Depp M; Paik J; Ge S; Shandas R; Sahn DJ J Am Coll Cardiol; 1995 Nov; 26(5):1333-9. PubMed ID: 7594051 [TBL] [Abstract][Full Text] [Related]
19. In vitro flow mapping of regurgitant jets. Systematic description of free jet with laser Doppler velocimetry. Diebold B; Delouche A; Delouche P; Guglielmi JP; Dumee P; Herment A Circulation; 1996 Jul; 94(2):158-69. PubMed ID: 8674174 [TBL] [Abstract][Full Text] [Related]
20. In vitro analysis of a model of intracardiac jet: analysis of the central core of axisymmetric jets. Diebold B; Delouche A; Dumée P; Guglielmi JP; Delouche P; Péronneau P J Biomech; 1990; 23(1):35-44. PubMed ID: 2307690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]