These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 9395041)

  • 1. The role of spatial interactions in creating the dispersion of transmembrane potential by premature electric shocks.
    Krassowska W; Kumar MS
    Ann Biomed Eng; 1997; 25(6):949-63. PubMed ID: 9395041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane potential changes caused by shocks in guinea pig papillary muscle.
    Zhou X; Smith WM; Rollins DL; Ideker RE
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2536-46. PubMed ID: 8997315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vulnerable period for low and high energy T-wave shocks: role of dispersion of repolarisation and effect of d-sotalol.
    Kirchhof PF; Fabritz CL; Zabel M; Franz MR
    Cardiovasc Res; 1996 Jun; 31(6):953-62. PubMed ID: 8759252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application.
    Raman V; Pollard AE; Fast VG
    Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
    Yamanouchi Y; Cheng Y; Tchou PJ; Efimov IR
    Can J Physiol Pharmacol; 2001 Jan; 79(1):25-33. PubMed ID: 11201498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of action potentials during extracellular electrical stimulation of long duration.
    Zhou X; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):779-89. PubMed ID: 9255685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refractoriness of cardiac muscle as affected by intercalated disks: a model study implications for fibrillation and defibrillation.
    Haas HG; Solchenbach K
    Gen Physiol Biophys; 2004 Jun; 23(2):133-71. PubMed ID: 15696857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial changes in the transmembrane potential during extracellular electric stimulation.
    Zhou X; Knisley SB; Smith WM; Rollins D; Pollard AE; Ideker RE
    Circ Res; 1998 Nov; 83(10):1003-14. PubMed ID: 9815148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks.
    DeBruin KA; Krassowska W
    Ann Biomed Eng; 1998; 26(4):584-96. PubMed ID: 9662151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a computer model to investigate sawtooth effects in the Purkinje system.
    Vigmond EJ; Clements C
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):389-99. PubMed ID: 17355050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock-induced figure-of-eight reentry in the isolated rabbit heart.
    Banville I; Gray RA; Ideker RE; Smith WM
    Circ Res; 1999 Oct; 85(8):742-52. PubMed ID: 10576949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model analysis of aftereffects of high-intensity DC stimulation on action potential of ventricular muscle.
    Sakuma I; Haraguchi T; Ohuchi K; Fukui Y; Kodama I; Toyama J; Shibata N; Hosoda S
    IEEE Trans Biomed Eng; 1998 Feb; 45(2):258-67. PubMed ID: 9473849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
    Cheek ER; Fast VG
    Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell and tissue responses to electric shocks.
    Ashihara T; Trayanova NA
    Europace; 2005 Sep; 7 Suppl 2():155-65. PubMed ID: 16102513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolongation and shortening of action potentials by electrical shocks in frog ventricular muscle.
    Knisley SB; Smith WM; Ideker RE
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2348-58. PubMed ID: 8023996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the stimulus interval on the action potential of rabbit papillary muscle fiber.
    Tosaka T; Saito K; Kinoshita S
    Nihon Seirigaku Zasshi; 1967; 29(9):544-5. PubMed ID: 5625737
    [No Abstract]   [Full Text] [Related]  

  • 20. The induction of reentry in cardiac tissue. The missing link: How electric fields alter transmembrane potential.
    Roth BJ; Krassowska W
    Chaos; 1998 Mar; 8(1):204-220. PubMed ID: 12779722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.