BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9395093)

  • 21. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain.
    Hidalgo P; Ansari AZ; Schmidt P; Hare B; Simkovich N; Farrell S; Shin EJ; Ptashne M; Wagner G
    Genes Dev; 2001 Apr; 15(8):1007-20. PubMed ID: 11316794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of DNA binding and metal substitution on the dynamics of the GAL4 DNA-binding domain as studied by amide proton exchange.
    Mau T; Baleja JD; Wagner G
    Protein Sci; 1992 Nov; 1(11):1403-12. PubMed ID: 1303761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae.
    Baleja JD; Marmorstein R; Harrison SC; Wagner G
    Nature; 1992 Apr; 356(6368):450-3. PubMed ID: 1557130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How does the GAL4 transcription factor recognize the appropriate DNA binding sites in vivo?
    Kodadek T
    Cell Mol Biol Res; 1993; 39(4):355-60. PubMed ID: 8312971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins.
    Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP
    J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator.
    Liu T; Golden JW; Giedroc DP
    Biochemistry; 2005 Jun; 44(24):8673-83. PubMed ID: 15952774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The DNA binding domains of the yeast Gal4 and human c-Jun transcription factors interact through the zinc-finger and bZIP motifs.
    Sollerbrant K; Akusjärvi G; Linder S; Svensson C
    Nucleic Acids Res; 1995 Feb; 23(4):588-94. PubMed ID: 7899077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator.
    Bird AJ; Zhao H; Luo H; Jensen LT; Srinivasan C; Evans-Galea M; Winge DR; Eide DJ
    EMBO J; 2000 Jul; 19(14):3704-13. PubMed ID: 10899124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete assignment of the 1H NMR spectrum and secondary structure of the DNA binding domain of GAL4.
    Gadhavi PL; Raine AR; Alefounder PR; Laue ED
    FEBS Lett; 1990 Dec; 276(1-2):49-53. PubMed ID: 2265711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polypeptide-metal cluster connectivities in Cd(II) GAL4.
    Gadhavi PL; Davis AL; Povey JF; Keeler J; Laue ED
    FEBS Lett; 1991 Apr; 281(1-2):223-6. PubMed ID: 2015899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A physico-chemical investigation of the self-association of the DNA binding domain of the yeast transcriptional activator GAL4.
    Gadhavi P; Morgan PJ; Alefounder P; Harding SE
    Eur Biophys J; 1996; 24(6):405-12. PubMed ID: 8765712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional domains of the heavy metal-responsive transcription regulator MTF-1.
    Radtke F; Georgiev O; Müller HP; Brugnera E; Schaffner W
    Nucleic Acids Res; 1995 Jun; 23(12):2277-86. PubMed ID: 7610056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1.
    Zhang L; Bermingham-McDonogh O; Turcotte B; Guarente L
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2851-5. PubMed ID: 8464899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleosome disruption by transcription factor binding in yeast.
    Morse RH
    Science; 1993 Dec; 262(5139):1563-6. PubMed ID: 8248805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The yeast activator HAP1--a GAL4 family member--binds DNA in a directly repeated orientation.
    Zhang L; Guarente L
    Genes Dev; 1994 Sep; 8(17):2110-9. PubMed ID: 7958882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural dissection of the DNA-binding domain of the yeast transcriptional activator GAL4 reveals an alpha-helical region responsible for dimerization.
    Gadhavi PL
    J Protein Chem; 1998 Oct; 17(7):591-8. PubMed ID: 9853673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conservation of a putative inhibitory domain in the GAL4 family members.
    Poch O
    Gene; 1997 Jan; 184(2):229-35. PubMed ID: 9031633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA recognition by GAL4: structure of a protein-DNA complex.
    Marmorstein R; Carey M; Ptashne M; Harrison SC
    Nature; 1992 Apr; 356(6368):408-14. PubMed ID: 1557122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the Zn(II) site in the copper-responsive yeast transcription factor, AMT1: a conserved Zn module.
    Farrell RA; Thorvaldsen JL; Winge DR
    Biochemistry; 1996 Feb; 35(5):1571-80. PubMed ID: 8634288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissection of the DNA binding domain of yeast Zn-finger protein Rme1p, a repressor of meiotic activator IME1.
    Shimizu M; Hara M; Murase A; Shindo H; Mitchell AP
    Nucleic Acids Symp Ser; 1997; (37):175-6. PubMed ID: 9586056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.