BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9396019)

  • 1. On the use of neural network techniques to analyse sleep EEG data. First communication: application of evolutionary and genetic algorithms to reduce the feature space and to develop classification rules.
    Baumgart-Schmitt R; Herrmann WM; Eilers R; Bes F
    Neuropsychobiology; 1997; 36(4):194-210. PubMed ID: 9396019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of neural network techniques to analyze sleep EEG data. Third communication: robustification of the classificator by applying an algorithm obtained from 9 different networks.
    Baumgart-Schmitt R; Herrmann WM; Eilers R
    Neuropsychobiology; 1998; 37(1):49-58. PubMed ID: 9438272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rule-based automatic sleep staging method.
    Liang SF; Kuo CE; Hu YH; Cheng YS
    J Neurosci Methods; 2012 Mar; 205(1):169-76. PubMed ID: 22245090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.
    Anderer P; Gruber G; Parapatics S; Woertz M; Miazhynskaia T; Klosch G; Saletu B; Zeitlhofer J; Barbanoj MJ; Danker-Hopfe H; Himanen SL; Kemp B; Penzel T; Grozinger M; Kunz D; Rappelsberger P; Schlogl A; Dorffner G
    Neuropsychobiology; 2005; 51(3):115-33. PubMed ID: 15838184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep-stage scoring in the rat using a support vector machine.
    Crisler S; Morrissey MJ; Anch AM; Barnett DW
    J Neurosci Methods; 2008 Mar; 168(2):524-34. PubMed ID: 18093659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series.
    Chambon S; Galtier MN; Arnal PJ; Wainrib G; Gramfort A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):758-769. PubMed ID: 29641380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic sleep scoring: a search for an optimal combination of measures.
    Krakovská A; Mezeiová K
    Artif Intell Med; 2011 Sep; 53(1):25-33. PubMed ID: 21742473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Visual Scoring of Sleep in Infants 0 to 2 Months of Age.
    Grigg-Damberger MM
    J Clin Sleep Med; 2016 Mar; 12(3):429-45. PubMed ID: 26951412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.
    Supratak A; Dong H; Wu C; Guo Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1998-2008. PubMed ID: 28678710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep scoring using artificial neural networks.
    Ronzhina M; Janoušek O; Kolářová J; Nováková M; Honzík P; Provazník I
    Sleep Med Rev; 2012 Jun; 16(3):251-63. PubMed ID: 22030383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SleepSEEG: automatic sleep scoring using intracranial EEG recordings only.
    von Ellenrieder N; Peter-Derex L; Gotman J; Frauscher B
    J Neural Eng; 2022 May; 19(2):. PubMed ID: 35439736
    [No Abstract]   [Full Text] [Related]  

  • 14. Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease.
    Christensen JA; Zoetmulder M; Koch H; Frandsen R; Arvastson L; Christensen SR; Jennum P; Sorensen HB
    J Neurosci Methods; 2014 Sep; 235():262-76. PubMed ID: 25088694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection.
    Sriraam N; Padma Shri TK; Maheshwari U
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):797-806. PubMed ID: 27550443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EOG and EMG: two important switches in automatic sleep stage classification.
    Estrada E; Nazeran H; Barragan J; Burk JR; Lucas EA; Behbehani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2458-61. PubMed ID: 17946514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Method for Automatic Sleep Stage Classification.
    Zhang J; Wu Y
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1097-1110. PubMed ID: 28809709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms.
    Şen B; Peker M; Çavuşoğlu A; Çelebi FV
    J Med Syst; 2014 Mar; 38(3):18. PubMed ID: 24609509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification.
    Herrera LJ; Fernandes CM; Mora AM; Migotina D; Largo R; Guillen A; Rosa AC
    Int J Neural Syst; 2013 Jun; 23(3):1350012. PubMed ID: 23627659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of rapid-eye-movement sleep from single-channel EEG data by artificial neural networks: a study in depressive patients with and without amitriptyline treatment.
    Grözinger M; Röschke J
    Neuropsychobiology; 1996; 33(3):155-9. PubMed ID: 8776745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.