These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9396820)

  • 1. Use of an engineered ribozyme to produce a circular human exon.
    Mikheeva S; Hakim-Zargar M; Carlson D; Jarrell K
    Nucleic Acids Res; 1997 Dec; 25(24):5085-94. PubMed ID: 9396820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of engineered ribozymes to catalyze chimeric gene assembly.
    Mikheeva S; Jarrell KA
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7486-90. PubMed ID: 8755500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modified group I intron can function as both a ribozyme and a 5' exon in a trans-exon ligation reaction.
    Tasiouka KI; Burke JM
    Gene; 1994 Jun; 144(1):1-7. PubMed ID: 8026742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circularizing ribozymes and decoy-competitors by autocatalytic splicing in vitro and in vivo.
    Puttaraju M; Been MD
    SAAS Bull Biochem Biotechnol; 1996; 9():77-82. PubMed ID: 8652136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core.
    Testa SM; Haidaris CG; Gigliotti F; Turner DH
    Biochemistry; 1997 Dec; 36(49):15303-14. PubMed ID: 9398259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent metal ions promote the formation of the 5'-splice site recognition complex in a self-splicing group II intron.
    Kruschel D; Sigel RK
    J Inorg Biochem; 2008 Dec; 102(12):2147-54. PubMed ID: 18842303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4.
    Ford E; Ares M
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3117-21. PubMed ID: 7512723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rate and specificity of a group I ribozyme are inversely affected by choice of monovalent salt.
    Partono S; Lewin AS
    Nucleic Acids Res; 1991 Feb; 19(3):605-9. PubMed ID: 2011532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2'-Hydroxyl groups important for exon polymerization and reverse exon ligation reactions catalyzed by a group I ribozyme.
    Berzal-Herranz A; Chowrira BM; Polsenberg JF; Burke JM
    Biochemistry; 1993 Sep; 32(35):8981-6. PubMed ID: 8369271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposition and exon shuffling by group II intron RNA molecules in pieces.
    Hiller R; Hetzer M; Schweyen RJ; Mueller MW
    J Mol Biol; 2000 Mar; 297(2):301-8. PubMed ID: 10715202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs.
    Johnson AK; Sinha J; Testa SM
    Biochemistry; 2005 Aug; 44(31):10702-10. PubMed ID: 16060679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition properties of IGS-mediated reactions catalyzed by a Pneumocystis carinii group I intron.
    Johnson AK; Baum DA; Tye J; Bell MA; Testa SM
    Nucleic Acids Res; 2003 Apr; 31(7):1921-34. PubMed ID: 12655009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group I intron ribozymes.
    Nielsen H
    Methods Mol Biol; 2012; 848():73-89. PubMed ID: 22315064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A circular trans-acting hepatitis delta virus ribozyme.
    Puttaraju M; Perrotta AT; Been MD
    Nucleic Acids Res; 1993 Sep; 21(18):4253-8. PubMed ID: 7692400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse self-splicing of group II intron RNAs in vitro.
    Augustin S; Müller MW; Schweyen RJ
    Nature; 1990 Jan; 343(6256):383-6. PubMed ID: 1689013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction.
    Dotson PP; Sinha J; Testa SM
    FEBS J; 2008 Jun; 275(12):3110-22. PubMed ID: 18479464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternative intron-exon pairing scheme implied by unexpected in vitro activities of group II intron RmInt1 from Sinorhizobium meliloti.
    Costa M; Michel F; Molina-Sánchez MD; Martinez-Abarca F; Toro N
    Biochimie; 2006 Jun; 88(6):711-7. PubMed ID: 16460862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.