BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 9398147)

  • 41. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers.
    Raja MM; Kinne RK
    Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Binding of prion protein to lipid membranes and implications for prion conversion.
    Sanghera N; Pinheiro TJ
    J Mol Biol; 2002 Feb; 315(5):1241-56. PubMed ID: 11827491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of melittin-induced lysis by surface charge density of membranes.
    Monette M; Lafleur M
    Biophys J; 1995 Jan; 68(1):187-95. PubMed ID: 7711241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lipid binding specificity of bovine α-lactalbumin: a multidimensional approach.
    Chaudhuri A; Chattopadhyay A
    Biochim Biophys Acta; 2014 Aug; 1838(8):2078-86. PubMed ID: 24802274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membranes.
    Butko P; Huang F; Pusztai-Carey M; Surewicz WK
    Biochemistry; 1997 Oct; 36(42):12862-8. PubMed ID: 9335544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift.
    Haldar S; Chaudhuri A; Chattopadhyay A
    J Phys Chem B; 2011 May; 115(19):5693-706. PubMed ID: 21428321
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The membrane-induced structure of melittin is correlated with the fluidity of the lipids.
    Andersson A; Biverståhl H; Nordin J; Danielsson J; Lindahl E; Mäler L
    Biochim Biophys Acta; 2007 Jan; 1768(1):115-21. PubMed ID: 16949029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of a novel melittin isoform from Africanized Apis mellifera venom.
    Sciani JM; Marques-Porto R; Lourenço Junior A; Orsi Rde O; Ferreira Junior RS; Barraviera B; Pimenta DC
    Peptides; 2010 Aug; 31(8):1473-9. PubMed ID: 20472009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effect of sterols on melittin incorporation into liposomal membranes].
    Adamian SIa; Kaulin IuA; Kuznetsova IM; Turoverov KK; Shchagina LV
    Tsitologiia; 1998; 40(8-9):801-5. PubMed ID: 9821252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of the wheat endosperm lipid-binding protein puroindoline-a with phospholipids.
    Le Guernevé C; Seigneuret M; Marion D
    Arch Biochem Biophys; 1998 Dec; 360(2):179-86. PubMed ID: 9851829
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Melittin-induced alterations in dynamic properties of human red blood cell membranes.
    Watala C; Gwoździński K
    Chem Biol Interact; 1992 Apr; 82(2):135-49. PubMed ID: 1314707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characteristics of the interaction of melittin with sarcoplasmic reticulum membranes.
    Shorina EA; Mast NV; Storey KB; Lopina OD; Rubtsov AM
    Biochemistry (Mosc); 1999 Jun; 64(6):705-13. PubMed ID: 10395987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces.
    Clayton JC; Hughes E; Middleton DA
    Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides.
    Jin Y; Mozsolits H; Hammer J; Zmuda E; Zhu F; Zhang Y; Aguilar MI; Blazyk J
    Biochemistry; 2003 Aug; 42(31):9395-405. PubMed ID: 12899626
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Release of lipid vesicle contents by an antibacterial cecropin A-melittin hybrid peptide.
    Mancheño JM; Oñaderra M; Martínez del Pozo A; Díaz-Achirica P; Andreu D; Rivas L; Gavilanes JG
    Biochemistry; 1996 Jul; 35(30):9892-9. PubMed ID: 8703963
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2004 Jun; 43(21):6393-403. PubMed ID: 15157073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.