BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 9398151)

  • 1. Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials.
    Lostao A; Gómez-Moreno C; Mayhew SG; Sancho J
    Biochemistry; 1997 Nov; 36(47):14334-44. PubMed ID: 9398151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of neighboring FMN side chains in the modulation of flavin reduction potentials and in the energetics of the FMN:apoprotein interaction in Anabaena flavodoxin.
    Nogués I; Campos LA; Sancho J; Gómez-Moreno C; Mayhew SG; Medina M
    Biochemistry; 2004 Dec; 43(48):15111-21. PubMed ID: 15568803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants.
    O'Farrell PA; Walsh MA; McCarthy AA; Higgins TM; Voordouw G; Mayhew SG
    Biochemistry; 1998 Jun; 37(23):8405-16. PubMed ID: 9622492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough).
    Zhou Z; Swenson RP
    Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cumulative electrostatic effect of aromatic stacking interactions and the negative electrostatic environment of the flavin mononucleotide binding site is a major determinant of the reduction potential for the flavodoxin from Desulfovibrio vulgaris [Hildenborough].
    Zhou Z; Swenson RP
    Biochemistry; 1996 Dec; 35(50):15980-8. PubMed ID: 8973168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions.
    Swenson RP; Krey GD
    Biochemistry; 1994 Jul; 33(28):8505-14. PubMed ID: 8031784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning of the FMN binding and oxido-reduction properties by neighboring side chains in Anabaena flavodoxin.
    Frago S; Goñi G; Herguedas B; Peregrina JR; Serrano A; Perez-Dorado I; Molina R; Gómez-Moreno C; Hermoso JA; Martínez-Júlvez M; Mayhew SG; Medina M
    Arch Biochem Biophys; 2007 Nov; 467(2):206-17. PubMed ID: 17904516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI.
    Lawson RJ; von Wachenfeldt C; Haq I; Perkins J; Munro AW
    Biochemistry; 2004 Oct; 43(39):12390-409. PubMed ID: 15449930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Native-specific stabilization of flavodoxin by the FMN cofactor: structural and thermodynamical explanation.
    Campos LA; Sancho J
    Proteins; 2006 May; 63(3):581-94. PubMed ID: 16444751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials.
    Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML
    J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin.
    McCarthy AA; Walsh MA; Verma CS; O'Connell DP; Reinhold M; Yalloway GN; D'Arcy D; Higgins TM; Voordouw G; Mayhew SG
    Biochemistry; 2002 Sep; 41(36):10950-62. PubMed ID: 12206666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common conformational changes in flavodoxins induced by FMN and anion binding: the structure of Helicobacter pylori apoflavodoxin.
    Martínez-Júlvez M; Cremades N; Bueno M; Pérez-Dorado I; Maya C; Cuesta-López S; Prada D; Falo F; Hermoso JA; Sancho J
    Proteins; 2007 Nov; 69(3):581-94. PubMed ID: 17623845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 1. Kinetic evidence for cooperative effects associated with the binding of inorganic phosphate and the 5'-phosphate moiety of the cofactor.
    Murray TA; Swenson RP
    Biochemistry; 2003 Mar; 42(8):2307-16. PubMed ID: 12600198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavodoxin-mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena: role of flavodoxin hydrophobic residues in protein-protein interactions.
    Goñi G; Serrano A; Frago S; Hervás M; Peregrina JR; De la Rosa MA; Gómez-Moreno C; Navarro JA; Medina M
    Biochemistry; 2008 Jan; 47(4):1207-17. PubMed ID: 18177021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-dependent spectroscopic changes associated with the hydroquinone of FMN in flavodoxins.
    Yalloway GN; Mayhew SG; Malthouse JP; Gallagher ME; Curley GP
    Biochemistry; 1999 Mar; 38(12):3753-62. PubMed ID: 10090764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.