These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 9398159)
1. Dissociation of bacteriophage T4 DNA polymerase and its processivity clamp after completion of Okazaki fragment synthesis. Carver TE; Sexton DJ; Benkovic SJ Biochemistry; 1997 Nov; 36(47):14409-17. PubMed ID: 9398159 [TBL] [Abstract][Full Text] [Related]
2. An alternative clamp loading pathway via the T4 clamp loader gp44/62-DNA complex. Zhuang Z; Berdis AJ; Benkovic SJ Biochemistry; 2006 Jul; 45(26):7976-89. PubMed ID: 16800623 [TBL] [Abstract][Full Text] [Related]
3. Interaction between the T4 helicase loading protein (gp59) and the DNA polymerase (gp43): unlocking of the gp59-gp43-DNA complex to initiate assembly of a fully functional replisome. Xi J; Zhang Z; Zhuang Z; Yang J; Spiering MM; Hammes GG; Benkovic SJ Biochemistry; 2005 May; 44(21):7747-56. PubMed ID: 15909989 [TBL] [Abstract][Full Text] [Related]
4. Dissecting the order of bacteriophage T4 DNA polymerase holoenzyme assembly. Sexton DJ; Kaboord BF; Berdis AJ; Carver TE; Benkovic SJ Biochemistry; 1998 May; 37(21):7749-56. PubMed ID: 9601035 [TBL] [Abstract][Full Text] [Related]
5. Role of adenosine 5'-triphosphate hydrolysis in the assembly of the bacteriophage T4 DNA replication holoenzyme complex. Berdis AJ; Benkovic SJ Biochemistry; 1996 Jul; 35(28):9253-65. PubMed ID: 8703931 [TBL] [Abstract][Full Text] [Related]
6. Dissection of the ATP-driven reaction cycle of the bacteriophage T4 DNA replication processivity clamp loading system. Pietroni P; Young MC; Latham GJ; von Hippel PH J Mol Biol; 2001 Jun; 309(4):869-91. PubMed ID: 11399065 [TBL] [Abstract][Full Text] [Related]
7. Interaction between the T4 helicase-loading protein (gp59) and the DNA polymerase (gp43): a locking mechanism to delay replication during replisome assembly. Xi J; Zhuang Z; Zhang Z; Selzer T; Spiering MM; Hammes GG; Benkovic SJ Biochemistry; 2005 Feb; 44(7):2305-18. PubMed ID: 15709743 [TBL] [Abstract][Full Text] [Related]
8. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp. Young MC; Weitzel SE; von Hippel PH J Mol Biol; 1996 Dec; 264(3):440-52. PubMed ID: 8969296 [TBL] [Abstract][Full Text] [Related]
9. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence monitoring of T4 polymerase holoenzyme accessory protein interactions during loading of the sliding clamp onto the template-primer junction. Latham GJ; Pietroni P; Dong F; Young MC; von Hippel PH J Mol Biol; 1996 Dec; 264(3):426-39. PubMed ID: 8969295 [TBL] [Abstract][Full Text] [Related]
12. Dual role of the 44/62 protein as a matchmaker protein and DNA polymerase chaperone during assembly of the bacteriophage T4 holoenzyme complex. Kaboord BF; Benkovic SJ Biochemistry; 1996 Jan; 35(3):1084-92. PubMed ID: 8547244 [TBL] [Abstract][Full Text] [Related]
13. The control mechanism for lagging strand polymerase recycling during bacteriophage T4 DNA replication. Yang J; Nelson SW; Benkovic SJ Mol Cell; 2006 Jan; 21(2):153-64. PubMed ID: 16427006 [TBL] [Abstract][Full Text] [Related]
15. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720 [TBL] [Abstract][Full Text] [Related]
16. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching. Tleugabulova D; Reha-Krantz LJ Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891 [TBL] [Abstract][Full Text] [Related]
17. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Trakselis MA; Alley SC; Abel-Santos E; Benkovic SJ Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8368-75. PubMed ID: 11459977 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of bacteriophage T4 DNA holoenzyme assembly: the 44/62 protein acts as a molecular motor. Berdis AJ; Benkovic SJ Biochemistry; 1997 Mar; 36(10):2733-43. PubMed ID: 9062100 [TBL] [Abstract][Full Text] [Related]
19. Single-molecule investigation of the T4 bacteriophage DNA polymerase holoenzyme: multiple pathways of holoenzyme formation. Smiley RD; Zhuang Z; Benkovic SJ; Hammes GG Biochemistry; 2006 Jul; 45(26):7990-7. PubMed ID: 16800624 [TBL] [Abstract][Full Text] [Related]
20. Sliding clamp of the bacteriophage T4 polymerase has open and closed subunit interfaces in solution. Alley SC; Shier VK; Abel-Santos E; Sexton DJ; Soumillion P; Benkovic SJ Biochemistry; 1999 Jun; 38(24):7696-709. PubMed ID: 10387009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]