These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 9398178)
41. Movement of retinal along the visual transduction path. Borhan B; Souto ML; Imai H; Shichida Y; Nakanishi K Science; 2000 Jun; 288(5474):2209-12. PubMed ID: 10864869 [TBL] [Abstract][Full Text] [Related]
42. Cone visual pigments are present in gecko rod cells. Kojima D; Okano T; Fukada Y; Shichida Y; Yoshizawa T; Ebrey TG Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6841-5. PubMed ID: 1379723 [TBL] [Abstract][Full Text] [Related]
43. Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Grimm C; Wenzel A; Williams T; Rol P; Hafezi F; Remé C Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):497-505. PubMed ID: 11157889 [TBL] [Abstract][Full Text] [Related]
44. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction]. Orlov NIa; Fesenko EE Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116 [TBL] [Abstract][Full Text] [Related]
45. Characteristics of the photoconversion of rhodopsin in the early stages of photolysis. Fel'dman TB; Fedorovich IB; Ostrovskii MA Neurosci Behav Physiol; 2004 Sep; 34(7):735-42. PubMed ID: 15526430 [TBL] [Abstract][Full Text] [Related]
46. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants. Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753 [TBL] [Abstract][Full Text] [Related]
47. Photolysis intermediates of human rhodopsin. Lewis JW; van Kuijk FJ; Thorgeirsson TE; Kliger DS Biochemistry; 1991 Dec; 30(48):11372-6. PubMed ID: 1742277 [TBL] [Abstract][Full Text] [Related]
48. Regulation of photoactivation in vertebrate short wavelength visual pigments: protonation of the retinylidene Schiff base and a counterion switch. Ramos LS; Chen MH; Knox BE; Birge RR Biochemistry; 2007 May; 46(18):5330-40. PubMed ID: 17439245 [TBL] [Abstract][Full Text] [Related]
49. Picosecond absorption studies on rhodopsin and isorhodopsin in detergent and native membrane. Rudzki JE; Peters KS Biochemistry; 1984 Aug; 23(17):3843-8. PubMed ID: 6487580 [TBL] [Abstract][Full Text] [Related]
50. Mechanism of cytochrome c oxidase-catalyzed reduction of dioxygen to water: evidence for peroxy and ferryl intermediates at room temperature. Sucheta A; Georgiadis KE; Einarsdóttir O Biochemistry; 1997 Jan; 36(3):554-65. PubMed ID: 9012671 [TBL] [Abstract][Full Text] [Related]
51. pKa of the protonated Schiff base of visual pigments. Ebrey TG Methods Enzymol; 2000; 315():196-207. PubMed ID: 10736703 [TBL] [Abstract][Full Text] [Related]
52. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin. Matsumoto H; Yoshizawa T Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914 [TBL] [Abstract][Full Text] [Related]
53. Comparison of Bovine and Carp Fish Visual Pigment Photo-Intermediates at Room Temperature. Dhankhar D; Nagpal A; Tachibanaki S; Li R; Cesario TC; Rentzepis PM Photochem Photobiol; 2022 Nov; 98(6):1303-1311. PubMed ID: 35313014 [TBL] [Abstract][Full Text] [Related]
54. Photoreversal kinetics of the I1 and I2 intermediates in the photocycle of photoactive yellow protein by double flash experiments with variable time delay. Joshi CP; Borucki B; Otto H; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Jan; 44(2):656-65. PubMed ID: 15641791 [TBL] [Abstract][Full Text] [Related]
55. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin. Kochendoerfer GG; Verdegem PJ; van der Hoef I; Lugtenburg J; Mathies RA Biochemistry; 1996 Dec; 35(50):16230-40. PubMed ID: 8973196 [TBL] [Abstract][Full Text] [Related]
56. Mechanism of spectral tuning in the dolphin visual pigments. Fasick JI; Robsinson PR Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225 [TBL] [Abstract][Full Text] [Related]
57. Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. Imai H; Imamoto Y; Yoshizawa T; Shichida Y Biochemistry; 1995 Aug; 34(33):10525-31. PubMed ID: 7654707 [TBL] [Abstract][Full Text] [Related]
58. Flash photolysis and low temperature photochemistry of bovine rhodopsin with a fixed 11-ene. Mao B; Tsuda M; Ebrey TG; Akita H; Balogh-Nair V; Nakanishi K Biophys J; 1981 Aug; 35(2):543-6. PubMed ID: 7272450 [TBL] [Abstract][Full Text] [Related]
59. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin. Fishkin N; Berova N; Nakanishi K Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879 [TBL] [Abstract][Full Text] [Related]