BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 9398205)

  • 41. A triple helix obtained by specific recognition of all 4 bases in duplex DNA can adopt a collapsed or an extended form.
    Dagneaux C; Shchyolkina AK; Liquier J; Florentiev VL; Taillandier E
    C R Acad Sci III; 1995 May; 318(5):559-62. PubMed ID: 7671002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of the number of nucleic acid oligomer charges on the salt dependence of stability (DeltaG 37degrees) and melting temperature (Tm): NLPB analysis of experimental data.
    Shkel IA; Record MT
    Biochemistry; 2004 Jun; 43(22):7090-101. PubMed ID: 15170346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies of the intermolecular DNA triplexes of C+.GC and T.AT triplets by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.
    Wan C; Guo X; Liu Z; Liu S
    J Mass Spectrom; 2008 Feb; 43(2):164-72. PubMed ID: 17828803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and triplex-forming properties of cyclic oligonucleotides with (G,A)-antiparallel strands.
    Grimau MG; Aviñó A; Gargallo R; Eritja R
    Chem Biodivers; 2005 Feb; 2(2):275-85. PubMed ID: 17191980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proton NMR studies of 5'-d-(TC)(3) (CT)(3) (AG)(3)-3'--a paperclip triplex: the structural relevance of turns.
    Pasternack LB; Lin SB; Chin TM; Lin WC; Huang DH; Kan LS
    Biophys J; 2002 Jun; 82(6):3170-80. PubMed ID: 12023241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 1-, 2-, and 4-ethynylpyrenes in the structure of twisted intercalating nucleic acids: structure, thermal stability, and fluorescence relationship.
    Filichev VV; Astakhova IV; Malakhov AD; Korshun VA; Pedersen EB
    Chemistry; 2008; 14(32):9968-80. PubMed ID: 18810743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of pyrene fluorescence in DNA probes depends upon the nature of the conformationally restricted nucleotide.
    Honcharenko D; Zhou C; Chattopadhyaya J
    J Org Chem; 2008 Apr; 73(7):2829-42. PubMed ID: 18331060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable and selective formation of hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (TINA) prepared via postsynthetic Sonogashira solid-phase coupling reactions.
    Filichev VV; Pedersen EB
    J Am Chem Soc; 2005 Oct; 127(42):14849-58. PubMed ID: 16231939
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical study of the Hoogsteen-Watson-Crick junctions in DNA.
    Cubero E; Luque FJ; Orozco M
    Biophys J; 2006 Feb; 90(3):1000-8. PubMed ID: 16287814
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Strong binding of single-stranded DNA by stem-loop oligonucleotides.
    D'Souza DJ; Kool ET
    J Biomol Struct Dyn; 1992 Aug; 10(1):141-52. PubMed ID: 1418737
    [TBL] [Abstract][Full Text] [Related]  

  • 52. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA-templated formation and luminescence of diphenylacetylene dimeric and trimeric complexes.
    Letsinger RL; Wu T; Yang JS; Lewis FD
    Photochem Photobiol Sci; 2008 Jul; 7(7):854-9. PubMed ID: 18597034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA glue: 1-, 2- and 4-ethynylpyrenes in the structure of twisted intercalating nucleic acids (TINAs), DNA duplexes/triplexes and interstrand excimer formation.
    Filichev VV; Astakhova IV; Malakhov AD; Korshun VA; Pedersen EB
    Nucleic Acids Symp Ser (Oxf); 2008; (52):347-8. PubMed ID: 18776396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Helix-coil transition of a four-way DNA junction observed by multiple fluorescence parameters.
    Vámosi G; Clegg RM
    J Phys Chem B; 2008 Oct; 112(41):13136-48. PubMed ID: 18811195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The helix-coil transition of DNA duplexes and hairpins observed by multiple fluorescence parameters.
    Vámosi G; Clegg RM
    Biochemistry; 1998 Oct; 37(40):14300-16. PubMed ID: 9760268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimal configuration of pyrene excimer induced by the excimer-forming two-probe nucleic acid hybridization method.
    Masuko M; Toyoda S; Suwa M; Mitaku S; Shimazu A; Ohtani H
    Nucleic Acids Symp Ser; 1997; (37):83-4. PubMed ID: 9586010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Base-pair dynamics in an antiparallel DNA triplex measured by catalyzed imino proton exchange monitored via 1H NMR spectroscopy.
    Wärmländer S; Sandström K; Leijon M; Gräslund A
    Biochemistry; 2003 Nov; 42(43):12589-95. PubMed ID: 14580205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation of DNA triple helix containing N(4)-(6-aminopyridin-2-yl)-2'-deoxycytidine.
    Chin TM; Tseng MH; Chung KY; Hung FS; Lin SB; Kan LS
    J Biomol Struct Dyn; 2001 Dec; 19(3):543-53. PubMed ID: 11790152
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pyrene excimer fluorescence as a probe for parallel G-quadruplex formation.
    Zhu H; Lewis FD
    Bioconjug Chem; 2007; 18(4):1213-7. PubMed ID: 17477498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.