BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9398223)

  • 1. Microscopic pKa values of Escherichia coli thioredoxin.
    Chivers PT; Prehoda KE; Volkman BF; Kim BM; Markley JL; Raines RT
    Biochemistry; 1997 Dec; 36(48):14985-91. PubMed ID: 9398223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General acid/base catalysis in the active site of Escherichia coli thioredoxin.
    Chivers PT; Raines RT
    Biochemistry; 1997 Dec; 36(50):15810-6. PubMed ID: 9398311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CXXC motif: a rheostat in the active site.
    Chivers PT; Prehoda KE; Raines RT
    Biochemistry; 1997 Apr; 36(14):4061-6. PubMed ID: 9099998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionization equilibria for side-chain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NF kappa B.
    Qin J; Clore GM; Gronenborn AM
    Biochemistry; 1996 Jan; 35(1):7-13. PubMed ID: 8555200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
    Mössner E; Huber-Wunderlich M; Glockshuber R
    Protein Sci; 1998 May; 7(5):1233-44. PubMed ID: 9605329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin.
    Dillet V; Dyson HJ; Bashford D
    Biochemistry; 1998 Jul; 37(28):10298-306. PubMed ID: 9665738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli thioredoxin inhibition by cadmium: two mutually exclusive binding sites involving Cys32 and Asp26.
    Rollin-Genetet F; Berthomieu C; Davin AH; Quéméneur E
    Eur J Biochem; 2004 Apr; 271(7):1299-309. PubMed ID: 15030480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues.
    Carvalho AT; Swart M; van Stralen JN; Fernandes PA; Ramos MJ; Bickelhaupt FM
    J Phys Chem B; 2008 Feb; 112(8):2511-23. PubMed ID: 18237164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin.
    Takahashi N; Creighton TE
    Biochemistry; 1996 Jun; 35(25):8342-53. PubMed ID: 8679592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CXXC motif: imperatives for the formation of native disulfide bonds in the cell.
    Chivers PT; Laboissière MC; Raines RT
    EMBO J; 1996 Jun; 15(11):2659-67. PubMed ID: 8654363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of substitutions in the CXXC active-site motif of the extracytoplasmic thioredoxin ResA.
    Lewin A; Crow A; Hodson CT; Hederstedt L; Le Brun NE
    Biochem J; 2008 Aug; 414(1):81-91. PubMed ID: 18422485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein interaction as a powering source of oxidoreductive reactivity.
    Lin TY
    Mol Biosyst; 2010 Aug; 6(8):1454-62. PubMed ID: 20473443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin.
    Roos G; Garcia-Pino A; Van Belle K; Brosens E; Wahni K; Vandenbussche G; Wyns L; Loris R; Messens J
    J Mol Biol; 2007 May; 368(3):800-11. PubMed ID: 17368484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity.
    Fetrow JS; Godzik A; Skolnick J
    J Mol Biol; 1998 Oct; 282(4):703-11. PubMed ID: 9743619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspartic acid 26 in reduced Escherichia coli thioredoxin has a pKa > 9.
    Wilson NA; Barbar E; Fuchs JA; Woodward C
    Biochemistry; 1995 Jul; 34(28):8931-9. PubMed ID: 7619792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CXXC motif: crystal structure of an active-site variant of Escherichia coli thioredoxin.
    Schultz LW; Chivers PT; Raines RT
    Acta Crystallogr D Biol Crystallogr; 1999 Sep; 55(Pt 9):1533-8. PubMed ID: 10489448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioredoxin reductase-thioredoxin fusion enzyme from Mycobacterium leprae: comparison with the separately expressed thioredoxin reductase.
    Wang PF; Marcinkeviciene J; Williams CH; Blanchard JS
    Biochemistry; 1998 Nov; 37(46):16378-89. PubMed ID: 9819230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.