BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

735 related articles for article (PubMed ID: 9398309)

  • 1. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6327-35. PubMed ID: 9572847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance.
    Swanwick RS; Shrimpton PJ; Allemann RK
    Biochemistry; 2004 Apr; 43(14):4119-27. PubMed ID: 15065854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase.
    Antikainen NM; Smiley RD; Benkovic SJ; Hammes GG
    Biochemistry; 2005 Dec; 44(51):16835-43. PubMed ID: 16363797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of mutation on enzyme motion in dihydrofolate reductase.
    Watney JB; Agarwal PK; Hammes-Schiffer S
    J Am Chem Soc; 2003 Apr; 125(13):3745-50. PubMed ID: 12656604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.
    Maglia G; Javed MH; Allemann RK
    Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic reaction scheme for the dihydrofolate reductase domain of the bifunctional thymidylate synthase-dihydrofolate reductase from Leishmania major.
    Liang PH; Anderson KS
    Biochemistry; 1998 Sep; 37(35):12206-12. PubMed ID: 9724534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonconserved residues Ala287 and Ser290 of the Cryptosporidium hominis thymidylate synthase domain facilitate its rapid rate of catalysis.
    Doan LT; Martucci WE; Vargo MA; Atreya CE; Anderson KS
    Biochemistry; 2007 Jul; 46(28):8379-91. PubMed ID: 17580969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the binding site of homotetrameric R67 dihydrofolate reductase and correlating binding enthalpy with catalysis.
    Strader MB; Chopra S; Jackson M; Smiley RD; Stinnett L; Wu J; Howell EE
    Biochemistry; 2004 Jun; 43(23):7403-12. PubMed ID: 15182183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and structural effects of mutations of the catalytic amino-terminal proline in 4-oxalocrotonate tautomerase.
    Czerwinski RM; Johnson WH; Whitman CP
    Biochemistry; 1997 Nov; 36(47):14551-60. PubMed ID: 9398173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase.
    Thorpe IF; Brooks CL
    Proteins; 2004 Nov; 57(3):444-57. PubMed ID: 15382243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli.
    Zgiby S; Plater AR; Bates MA; Thomson GJ; Berry A
    J Mol Biol; 2002 Jan; 315(2):131-40. PubMed ID: 11779234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues.
    Kim HS; Damo SM; Lee SY; Wemmer D; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11428-39. PubMed ID: 16114879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific mutagenesis of dihydrofolate reductase from Escherichia coli.
    Chen JT; Mayer RJ; Fierke CA; Benkovic SJ
    J Cell Biochem; 1985; 29(2):73-82. PubMed ID: 3905833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.