These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 9398331)
41. RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1phase. Hamaguchi T; Sudo T; Osada H FEBS Lett; 1995 Sep; 372(1):54-8. PubMed ID: 7556642 [TBL] [Abstract][Full Text] [Related]
42. Structure-based discovery of small molecule inhibitors targeted to protein tyrosine phosphatase 1B. Sarmiento M; Wu L; Keng YF; Song L; Luo Z; Huang Z; Wu GZ; Yuan AK; Zhang ZY J Med Chem; 2000 Jan; 43(2):146-55. PubMed ID: 10649970 [TBL] [Abstract][Full Text] [Related]
43. Substrate specificities of catalytic fragments of protein tyrosine phosphatases (HPTP beta, LAR, and CD45) toward phosphotyrosylpeptide substrates and thiophosphotyrosylated peptides as inhibitors. Cho H; Krishnaraj R; Itoh M; Kitas E; Bannwarth W; Saito H; Walsh CT Protein Sci; 1993 Jun; 2(6):977-84. PubMed ID: 8318901 [TBL] [Abstract][Full Text] [Related]
44. Biological evaluation of newly synthesized quinoline-5,8-quinones as Cdc25B inhibitors. Cossy J; Belotti D; Brisson M; Skoko JJ; Wipf P; Lazo JS Bioorg Med Chem; 2006 Sep; 14(18):6283-7. PubMed ID: 16782352 [TBL] [Abstract][Full Text] [Related]
45. Protein tyrosine phosphatases: their roles in signal transduction. Dixon JE Recent Prog Horm Res; 1996; 51():405-14; discussion 415. PubMed ID: 8701088 [TBL] [Abstract][Full Text] [Related]
46. Discovery and characterization of novel small molecule inhibitors of human Cdc25B dual specificity phosphatase. Brisson M; Nguyen T; Vogt A; Yalowich J; Giorgianni A; Tobi D; Bahar I; Stephenson CR; Wipf P; Lazo JS Mol Pharmacol; 2004 Oct; 66(4):824-33. PubMed ID: 15231869 [TBL] [Abstract][Full Text] [Related]
47. High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry. Tan LP; Wu H; Yang PY; Kalesh KA; Zhang X; Hu M; Srinivasan R; Yao SQ Org Lett; 2009 Nov; 11(22):5102-5. PubMed ID: 19852491 [TBL] [Abstract][Full Text] [Related]
48. Small molecule peptidomimetics containing a novel phosphotyrosine bioisostere inhibit protein tyrosine phosphatase 1B and augment insulin action. Bleasdale JE; Ogg D; Palazuk BJ; Jacob CS; Swanson ML; Wang XY; Thompson DP; Conradi RA; Mathews WR; Laborde AL; Stuchly CW; Heijbel A; Bergdahl K; Bannow CA; Smith CW; Svensson C; Liljebris C; Schostarez HJ; May PD; Stevens FC; Larsen SD Biochemistry; 2001 May; 40(19):5642-54. PubMed ID: 11341829 [TBL] [Abstract][Full Text] [Related]
50. Synthesis, characterization, and protein tyrosine phosphatases inhibition activities of oxovanadium(IV) complexes with Schiff base and polypyridyl derivatives. Yuan C; Lu L; Wu Y; Liu Z; Guo M; Xing S; Fu X; Zhu M J Inorg Biochem; 2010 Sep; 104(9):978-86. PubMed ID: 20542335 [TBL] [Abstract][Full Text] [Related]
51. Inhibitors of Cdc25 phosphatases as anticancer agents: a patent review. Lavecchia A; Di Giovanni C; Novellino E Expert Opin Ther Pat; 2010 Mar; 20(3):405-25. PubMed ID: 20166845 [TBL] [Abstract][Full Text] [Related]
52. Structure of protein tyrosine phosphatase 1B in complex with inhibitors bearing two phosphotyrosine mimetics. Jia Z; Ye Q; Dinaut AN; Wang Q; Waddleton D; Payette P; Ramachandran C; Kennedy B; Hum G; Taylor SD J Med Chem; 2001 Dec; 44(26):4584-94. PubMed ID: 11741477 [TBL] [Abstract][Full Text] [Related]
53. Synthesis and biological evaluation of novel coumarin-based inhibitors of Cdc25 phosphatases. Valente S; Bana E; Viry E; Bagrel D; Kirsch G Bioorg Med Chem Lett; 2010 Oct; 20(19):5827-30. PubMed ID: 20800482 [TBL] [Abstract][Full Text] [Related]
54. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Barford D; Das AK; Egloff MP Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865 [TBL] [Abstract][Full Text] [Related]
56. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Lazo JS; Nemoto K; Pestell KE; Cooley K; Southwick EC; Mitchell DA; Furey W; Gussio R; Zaharevitz DW; Joo B; Wipf P Mol Pharmacol; 2002 Apr; 61(4):720-8. PubMed ID: 11901209 [TBL] [Abstract][Full Text] [Related]
57. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics. Groves MR; Yao ZJ; Roller PP; Burke TR; Barford D Biochemistry; 1998 Dec; 37(51):17773-83. PubMed ID: 9922143 [TBL] [Abstract][Full Text] [Related]
58. A molecular modeling analysis of the binding interactions between the okadaic acid class of natural product inhibitors and the Ser-Thr phosphatases, PP1 and PP2A. Gauss CM; Sheppeck JE; Nairn AC; Chamberlin R Bioorg Med Chem; 1997 Sep; 5(9):1751-73. PubMed ID: 9354231 [TBL] [Abstract][Full Text] [Related]
59. Peptidyl aldehydes as reversible covalent inhibitors of protein tyrosine phosphatases. Fu H; Park J; Pei D Biochemistry; 2002 Aug; 41(34):10700-9. PubMed ID: 12186556 [TBL] [Abstract][Full Text] [Related]
60. Structure-based design and discovery of novel inhibitors of protein tyrosine phosphatases. Huang P; Ramphal J; Wei J; Liang C; Jallal B; McMahon G; Tang C Bioorg Med Chem; 2003 Apr; 11(8):1835-49. PubMed ID: 12659770 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]