These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9398335)

  • 21. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily.
    Sanchez-Pulido L; Andrade-Navarro MA
    BMC Biochem; 2007 Nov; 8():23. PubMed ID: 17996046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-catalyzed oxidation of human serum albumin does not alter the interactive binding to the two principal drug binding sites.
    Yamasaki K; Nishi K; Anraku M; Taguchi K; Maruyama T; Otagiri M
    Biochem Biophys Rep; 2018 Jul; 14():155-160. PubMed ID: 29872747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radical fluorine transfer catalysed by an engineered nonheme iron enzyme.
    Zhao Q; Chen Z; Rui J; Huang X
    Methods Enzymol; 2024; 696():231-247. PubMed ID: 38658081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cation-π interaction between Lys53 and the flavin of fructosamine oxidase (FAOX-II) is critical for activity.
    Collard F; Fagan RL; Zhang J; Nemet I; Palfey BA; Monnier VM
    Biochemistry; 2011 Sep; 50(37):7977-86. PubMed ID: 21755947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular insights into the endoperoxide formation by Fe(II)/α-KG-dependent oxygenase NvfI.
    Mori T; Zhai R; Ushimaru R; Matsuda Y; Abe I
    Nat Commun; 2021 Jul; 12(1):4417. PubMed ID: 34285212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that the catalytic mechanism of heme a synthase involves the formation of a carbocation stabilized by a conserved glutamate.
    Rivett ED; Addis HG; Dietz JV; Carroll-Deaton JA; Gupta S; Foreman KL; Dang MA; Fox JL; Khalimonchuk O; Hegg EL
    Arch Biochem Biophys; 2023 Aug; 744():109665. PubMed ID: 37348627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure, function and evolution of the hemerythrin-like domain superfamily.
    Alvarez-Carreño C; Alva V; Becerra A; Lazcano A
    Protein Sci; 2018 Apr; 27(4):848-860. PubMed ID: 29330894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity.
    Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2019 Mar; 9(1):4022. PubMed ID: 30858490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis of the substrate specificity of the FPOD/FAOD family revealed by fructosyl peptide oxidase from Eupenicillium terrenum.
    Gan W; Gao F; Xing K; Jia M; Liu H; Gong W
    Acta Crystallogr F Struct Biol Commun; 2015 Apr; 71(Pt 4):381-7. PubMed ID: 25849495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray free-electron laser studies reveal correlated motion during isopenicillin
    Rabe P; Kamps JJAG; Sutherlin KD; Linyard JDS; Aller P; Pham CC; Makita H; Clifton I; McDonough MA; Leissing TM; Shutin D; Lang PA; Butryn A; Brem J; Gul S; Fuller FD; Kim IS; Cheah MH; Fransson T; Bhowmick A; Young ID; O'Riordan L; Brewster AS; Pettinati I; Doyle M; Joti Y; Owada S; Tono K; Batyuk A; Hunter MS; Alonso-Mori R; Bergmann U; Owen RL; Sauter NK; Claridge TDW; Robinson CV; Yachandra VK; Yano J; Kern JF; Orville AM; Schofield CJ
    Sci Adv; 2021 Aug; 7(34):. PubMed ID: 34417180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Potential of Essential Oils from Active Packaging to Reduce Ethylene Biosynthesis in Plant Products. Part 1: Vegetables (Broccoli and Tomato).
    López-Gómez A; Navarro-Martínez A; Garre A; Artés-Hernández F; Villalba P; Martínez-Hernández GB
    Plants (Basel); 2023 Sep; 12(19):. PubMed ID: 37836143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Secondary Structure in Enzyme-Inspired Polymer Catalysts Impacts Water Oxidation Efficiency.
    Sedenho GC; Nascimento SQ; Zamani M; Crespilho FN; Furst AL
    Adv Sci (Weinh); 2024 Jul; 11(25):e2402234. PubMed ID: 38629782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological formation of ethylene.
    Hausinger RP; Rifayee SBJS; Thomas MG; Chatterjee S; Hu J; Christov CZ
    RSC Chem Biol; 2023 Aug; 4(9):635-646. PubMed ID: 37654506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substitution of 2-oxoglutarate alters reaction outcomes of the Pseudomonas savastanoi ethylene-forming enzyme.
    Dhingra S; Zhang Z; Lohans CT; Brewitz L; Schofield CJ
    J Biol Chem; 2024 Jul; ():107546. PubMed ID: 38992435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photo-induced site-specific oxidative fragmentation of IgG1 mediated by iron(III)-containing histidine buffer: Mechanistic studies and excipient effects.
    Zhang Y; Ballesteros ME; Schöneich C
    Eur J Pharm Biopharm; 2023 Sep; 190():121-130. PubMed ID: 37482364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steric Perturbation of the Grob-like Final Step of Ethylene-Forming Enzyme Enables 3-Hydroxypropionate and Propylene Production.
    Burke EJ; Copeland RA; Dixit Y; Krebs C; Bollinger JM
    J Am Chem Soc; 2024 Jan; 146(3):1977-1983. PubMed ID: 38226594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases.
    Dunham NP; Arnold FH
    ACS Catal; 2020 Oct; 10(20):12239-12255. PubMed ID: 33282461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery and biochemical characterization of thermostable glycerol oxidases.
    Santema LL; Rotilio L; Xiang R; Tjallinks G; Guallar V; Mattevi A; Fraaije MW
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):61. PubMed ID: 38183484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate scope expansion of 4-phenol oxidases by rational enzyme selection and sequence-function relations.
    Eggerichs D; Weindorf N; Weddeling HG; Van der Linden IM; Tischler D
    Commun Chem; 2024 Jun; 7(1):123. PubMed ID: 38831005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics and catalytic mechanism of a novel multifunctional oxidase, CpmO, for chloramphenicols degradation from Sphingobium sp. WTD-1.
    Gao Y; Cheng H; Song Q; Huang J; Liu J; Pan D; Wu X
    J Hazard Mater; 2024 Mar; 465():133348. PubMed ID: 38154177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.