BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

774 related articles for article (PubMed ID: 9398337)

  • 21. Glutamate and aspartate as proton shuttles in mutants of carbonic anhydrase.
    Qian M; Tu C; Earnhardt JN; Laipis PJ; Silverman DN
    Biochemistry; 1997 Dec; 36(50):15758-64. PubMed ID: 9398305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic characterization of the Escherichia coli oligopeptidase A (OpdA) and the role of the Tyr(607) residue.
    Lorenzon RZ; Cunha CE; Marcondes MF; Machado MF; Juliano MA; Oliveira V; Travassos LR; Paschoalin T; Carmona AK
    Arch Biochem Biophys; 2010 Aug; 500(2):131-6. PubMed ID: 20513640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression and site-directed mutagenesis of the phosphatidylcholine-preferring phospholipase C of Bacillus cereus: probing the role of the active site Glu146.
    Martin SF; Spaller MR; Hergenrother PJ
    Biochemistry; 1996 Oct; 35(39):12970-7. PubMed ID: 8841144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of the gamma-carboxyl group of glutamate-462 of the large alpha-subunit for the catalytic function and the stability of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Deng H; Yang SY
    Biochemistry; 1997 Jan; 36(1):261-8. PubMed ID: 8993342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V.
    Heck RW; Boriack-Sjodin PA; Qian M; Tu C; Christianson DW; Laipis PJ; Silverman DN
    Biochemistry; 1996 Sep; 35(36):11605-11. PubMed ID: 8794740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli.
    Alkema WB; Prins AK; de Vries E; Janssen DB
    Biochem J; 2002 Jul; 365(Pt 1):303-9. PubMed ID: 12071857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Farnesyl protein transferase: identification of K164 alpha and Y300 beta as catalytic residues by mutagenesis and kinetic studies.
    Wu Z; Demma M; Strickland CL; Radisky ES; Poulter CD; Le HV; Windsor WT
    Biochemistry; 1999 Aug; 38(35):11239-49. PubMed ID: 10471273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-directed mutagenesis of active site residues of phosphite dehydrogenase.
    Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA
    Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward identification of acid/base catalysts in the active site of enolase: comparison of the properties of K345A, E168Q, and E211Q variants.
    Poyner RR; Laughlin LT; Sowa GA; Reed GH
    Biochemistry; 1996 Feb; 35(5):1692-9. PubMed ID: 8634301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II.
    Xue Y; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Sep; 17(1):93-106. PubMed ID: 7901850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi.
    MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG
    Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active site of epoxide hydrolases revisited: a noncanonical residue in potato StEH1 promotes both formation and breakdown of the alkylenzyme intermediate.
    Thomaeus A; Carlsson J; Aqvist J; Widersten M
    Biochemistry; 2007 Mar; 46(9):2466-79. PubMed ID: 17284015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic characterization of N-formimino-L-glutamate iminohydrolase from Pseudomonas aeruginosa.
    Martí-Arbona R; Raushel FM
    Biochemistry; 2006 Dec; 45(48):14256-62. PubMed ID: 17128965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-function relationships in human glutathione-dependent formaldehyde dehydrogenase. Role of Glu-67 and Arg-368 in the catalytic mechanism.
    Sanghani PC; Davis WI; Zhai L; Robinson H
    Biochemistry; 2006 Apr; 45(15):4819-30. PubMed ID: 16605250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a.
    Patskovsky YV; Patskovska LN; Listowsky I
    Biochemistry; 1999 Jan; 38(4):1193-202. PubMed ID: 9930979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional significance of Glu-77 and Tyr-137 within the active site of isoaspartyl dipeptidase.
    Martí-Arbona R; Thoden JB; Holden HM; Raushel FM
    Bioorg Chem; 2005 Dec; 33(6):448-58. PubMed ID: 16289685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the active site of Corynebacterium callunae starch phosphorylase through the characterization of wild-type and His334-->Gly mutant enzymes.
    Schwarz A; Brecker L; Nidetzky B
    FEBS J; 2007 Oct; 274(19):5105-15. PubMed ID: 17803683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.