BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9398414)

  • 1. Preparation and Characterization of Surface-Covered Nanometer-Sized Catalyst by Carboxylate Phase Transfer.
    Hu Z; Dong J; Chen S; Peng S
    J Colloid Interface Sci; 1997 Oct; 194(2):332-7. PubMed ID: 9398414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy.
    Li D; Yu Q; Li SS; Wan HQ; Liu LJ; Qi L; Liu B; Gao F; Dong L; Chen Y
    Chemistry; 2011 May; 17(20):5668-79. PubMed ID: 21688407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction.
    Namkhang P; Kongkachuichay P
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5410-7. PubMed ID: 26373151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preparation of δ-Valerolactone and Its Spectral Analysis].
    Feng SH; Jia TX; Zhang ZB; Gao J; Lin Y; Liu ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2810-3. PubMed ID: 26904823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of precursors on the structure and activity of CuO-CoO
    Zhang L; Yao X; Lu Y; Sun C; Tang C; Gao F; Dong L
    J Colloid Interface Sci; 2018 Jan; 509():334-345. PubMed ID: 28918376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.
    Zhu X; Tu X; Mei D; Zheng C; Zhou J; Gao X; Luo Z; Ni M; Cen K
    Chemosphere; 2016 Jul; 155():9-17. PubMed ID: 27093635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the precursor effect on the surface structure of γ-Al
    Wang X; Lu Y; Tan W; Liu A; Ji J; Wan H; Sun C; Tang C; Dong L
    J Colloid Interface Sci; 2019 Oct; 554():611-618. PubMed ID: 31336353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of composition on the functionality of hybrid CuO-ZnO-Al
    Hu Y; Zhang Y; Du J; Li C; Wang K; Liu L; Yu X; Wang K; Liu N
    RSC Adv; 2018 Aug; 8(53):30387-30395. PubMed ID: 35546860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of nanosized Pt-Au alloy catalyst and its activity in methanol oxidation.
    Kim KJ; Kim YH; Jeong WJ; Jeong SW; Park JC; Ahn HG
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4073-6. PubMed ID: 18047122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface morphology on optical properties of two multilayer structures CuO/ZnO/SiC and Al
    El-Fattah HA
    Sci Rep; 2023 Dec; 13(1):23035. PubMed ID: 38155186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5: effect of precursor and irradiation power on nanocatalyst properties and catalytic performance for direct syngas to DME.
    Allahyari S; Haghighi M; Ebadi A; Hosseinzadeh S
    Ultrason Sonochem; 2014 Mar; 21(2):663-73. PubMed ID: 24409466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).
    Chirizzi D; Guascito MR; Filippo E; Tepore A
    Talanta; 2016 Jan; 147():124-31. PubMed ID: 26592586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogenolysis of cellulose to C4-C7 alcohols over bi-functional CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts coupled with methanol reforming reaction.
    Wu Y; Gu F; Xu G; Zhong Z; Su F
    Bioresour Technol; 2013 Jun; 137():311-7. PubMed ID: 23591118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance.
    Zhao X; Tan Y; Wu F; Niu H; Tang Z; Cai Y; Giesy JP
    Sci Total Environ; 2016 Nov; 571():380-7. PubMed ID: 27450957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Catalytic degradation of naphthalene by CuO (-CeO2)/Al2O3].
    Zha J; Zhou HC; He DL; Shan L; Zhang L; Xie J
    Huan Jing Ke Xue; 2014 Oct; 35(10):3984-90. PubMed ID: 25693411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Easily Regenerated CuO/γ-Al
    Wang J; Li B; Li Y; Fan X; Zhang F; Zhang G; Zhu Y; Peng W
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2630-2641. PubMed ID: 33399440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [CuO-Ru/Al2O3 catalytic ozonation of acetophenone in water].
    Zhang H; Shi R; Zang XJ; Tong SP; Ma CA
    Huan Jing Ke Xue; 2010 Mar; 31(3):715-9. PubMed ID: 20358832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support-dependent active species formation for CuO catalysts: Leading to efficient pollutant degradation in alkaline conditions.
    Li Y; Guo L; Huang D; Jawad A; Chen Z; Yang J; Liu W; Shen Y; Wang M; Yin G
    J Hazard Mater; 2017 Apr; 328():56-62. PubMed ID: 28088630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic combustion of styrene over copper based catalyst: inhibitory effect of water vapor.
    Pan H; Xu M; Li Z; Huang S; He C
    Chemosphere; 2009 Jul; 76(5):721-6. PubMed ID: 19427660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.
    Kim KJ; Ahn HG
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6108-11. PubMed ID: 26369207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.