These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9398422)

  • 41. Interfacial and rheological properties of humic acid/hematite suspensions.
    Ramos-Tejada MM; Ontiveros A; Viota JL; Durán JD
    J Colloid Interface Sci; 2003 Dec; 268(1):85-95. PubMed ID: 14611777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electric Properties and Conformation of Polyethylenimine at the Hematite-Aqueous Solution Interface.
    Radeva T; Petkanchin I
    J Colloid Interface Sci; 1997 Dec; 196(1):87-91. PubMed ID: 9441653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization.
    Lin C; Kong D; Liu X; Wang H; Yu M; Lin J
    Inorg Chem; 2007 Apr; 46(7):2674-81. PubMed ID: 17338518
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of Erosion Behavior and Particle Contamination in Mass-Production CF₄/O₂ Plasma Chambers Using Y₂O₃ and YF₃ Protective Coatings.
    Lin TK; Wang WK; Huang SY; Tasi CT; Wuu DS
    Nanomaterials (Basel); 2017 Jul; 7(7):. PubMed ID: 28708079
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of amino acids on the formation of hematite particles in a forced hydrolysis reaction.
    Kandori K; Sakai M; Inoue S; Ishikawa T
    J Colloid Interface Sci; 2006 Jan; 293(1):108-15. PubMed ID: 16054636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Iron Atom Exchange between Hematite and Aqueous Fe(II).
    Frierdich AJ; Helgeson M; Liu C; Wang C; Rosso KM; Scherer MM
    Environ Sci Technol; 2015 Jul; 49(14):8479-86. PubMed ID: 26069932
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.
    Chen KL; Mylon SE; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(5):1516-23. PubMed ID: 16568765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hematite (Fe2O3) acts by oxydative stress and potentiates benzo[a]pyrene genotoxicity.
    Garry S; Nesslany F; Aliouat E; Haguenoer JM; Marzin D
    Mutat Res; 2004 Oct; 563(2):117-29. PubMed ID: 15364278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deposition of a titania layer on spherical porous silica particles and their nanostructure-induced vapor sensing properties.
    Shiba K; Takei T; Yoshikawa G; Ogawa M
    Nanoscale; 2017 Nov; 9(43):16791-16799. PubMed ID: 29072757
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis-Dependent Surface Defects and Morphology of Hematite Nanoparticles and Their Effect on Cytotoxicity in Vitro.
    Cardillo D; Tehei M; Hossain MS; Islam MM; Bogusz K; Shi D; Mitchell D; Lerch M; Rosenfeld A; Corde S; Konstantinov K
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5867-76. PubMed ID: 26881459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and characterization of carbonyl iron/poly(butylcyanoacrylate) core/shell nanoparticles.
    Arias JL; Gallardo V; Linares-Molinero F; Delgado AV
    J Colloid Interface Sci; 2006 Jul; 299(2):599-607. PubMed ID: 16580009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization.
    Morga M; Adamczyk Z; Kosior D; Oćwieja M
    Phys Chem Chem Phys; 2018 Jun; 20(22):15368-15379. PubMed ID: 29796553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Green Synthesis of Hexagonal Hematite (α-Fe
    Ulfa M; Prasetyoko D; Bahruji H; Nugraha RE
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The synthesis and magnetic properties of nanosized hematite (alpha-Fe2O3) particles.
    Raming TP; Winnubst AJ; van Kats CM; Philipse AP
    J Colloid Interface Sci; 2002 May; 249(2):346-50. PubMed ID: 16290607
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inulin as a novel biocompatible coating: evaluation of surface affinities toward CaHPO4, α-Fe2O3, ZnO, CaHPO4@ZnO and α-Fe2O3@ZnO nanoparticles.
    Santillán-Urquiza E; Arteaga-Cardona F; Hernandez-Herman E; Pacheco-García PF; González-Rodríguez R; Coffer JL; Mendoza-Alvarez ME; Vélez-Ruiz JF; Méndez-Rojas MA
    J Colloid Interface Sci; 2015 Dec; 460():339-48. PubMed ID: 26364076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 5-Fluorouracil intercalated iron oxide@layered double hydroxide core-shell nano-composites with isotropic and anisotropic architectures for shape-selective drug delivery applications.
    Tuncelli G; Ay AN; Zümreoglu-Karan B
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():562-8. PubMed ID: 26117790
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles.
    Itoh H; Sugimoto T
    J Colloid Interface Sci; 2003 Sep; 265(2):283-95. PubMed ID: 12962662
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity.
    Lounsbury AW; Yamani JS; Johnston CP; Larese-Casanova P; Zimmerman JB
    J Hazard Mater; 2016 Jun; 310():117-24. PubMed ID: 26905609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.