BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9398633)

  • 1. Oligomerization is an intrinsic property of calsequestrin in normal and transformed skeletal muscle.
    Maguire PB; Briggs FN; Lennon NJ; Ohlendieck K
    Biochem Biophys Res Commun; 1997 Nov; 240(3):721-7. PubMed ID: 9398633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calsequestrin blot overlay of two-dimensional electrophoretically separated microsomal proteins from skeletal muscle.
    Glover L; Froemming G; Ohlendieck K
    Anal Biochem; 2001 Dec; 299(2):268-71. PubMed ID: 11730355
    [No Abstract]   [Full Text] [Related]  

  • 4. Oligomerisation of Ca2+-regulatory membrane components involved in the excitation-contraction-relaxation cycle during postnatal development of rabbit skeletal muscle.
    Froemming GR; Ohlendieck K
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):226-38. PubMed ID: 9748594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chronic low-frequency stimulation on Ca2+-regulatory membrane proteins in rabbit fast muscle.
    Ohlendieck K; Frömming GR; Murray BE; Maguire PB; Leisner E; Traub I; Pette D
    Pflugers Arch; 1999 Oct; 438(5):700-8. PubMed ID: 10555569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex formation between calsequestrin and the ryanodine receptor in fast- and slow-twitch rabbit skeletal muscle.
    Murray BE; Ohlendieck K
    FEBS Lett; 1998 Jun; 429(3):317-22. PubMed ID: 9662440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomeric status of the dihydropyridine receptor in aged skeletal muscle.
    Ryan M; Carlson BM; Ohlendieck K
    Mol Cell Biol Res Commun; 2000 Oct; 4(4):224-9. PubMed ID: 11409916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle.
    Culligan K; Banville N; Dowling P; Ohlendieck K
    J Appl Physiol (1985); 2002 Feb; 92(2):435-45. PubMed ID: 11796649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subproteomics analysis of Ca+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle.
    Doran P; Dowling P; Lohan J; McDonnell K; Poetsch S; Ohlendieck K
    Eur J Biochem; 2004 Oct; 271(19):3943-52. PubMed ID: 15373840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular calsequestrin complex.
    Glover L; Quinn S; Ryan M; Pette D; Ohlendieck K
    Eur J Biochem; 2002 Sep; 269(18):4607-16. PubMed ID: 12230573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation.
    Beard NA; Casarotto MG; Wei L; Varsányi M; Laver DR; Dulhunty AF
    Biophys J; 2005 May; 88(5):3444-54. PubMed ID: 15731387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 90-kDa junctional sarcoplasmic reticulum protein forms an integral part of a supramolecular triad complex in skeletal muscle.
    Froemming GR; Pette D; Ohlendieck K
    Biochem Biophys Res Commun; 1999 Aug; 261(3):603-9. PubMed ID: 10441473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calsequestrin expression and calcium binding is increased in streptozotocin-induced diabetic rat skeletal muscle though not in cardiac muscle.
    Howarth FC; Glover L; Culligan K; Qureshi MA; Ohlendieck K
    Pflugers Arch; 2002 May; 444(1-2):52-8. PubMed ID: 11976916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligomerisation of calsequestrin from rabbit skeletal muscle.
    Maguire PB; Lennon NJ; Ohlendieck K
    Biochem Soc Trans; 1998 Aug; 26(3):S292. PubMed ID: 9766011
    [No Abstract]   [Full Text] [Related]  

  • 15. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum.
    Wang S; Trumble WR; Liao H; Wesson CR; Dunker AK; Kang CH
    Nat Struct Biol; 1998 Jun; 5(6):476-83. PubMed ID: 9628486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-aggregation of triadin in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Froemming GR; Murray BE; Ohlendieck K
    Biochim Biophys Acta; 1999 Apr; 1418(1):197-205. PubMed ID: 10209224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frog cardiac calsequestrin. Identification, characterization, and subcellular distribution in two structurally distinct regions of peripheral sarcoplasmic reticulum in frog ventricular myocardium.
    McLeod AG; Shen AC; Campbell KP; Michalak M; Jorgensen AO
    Circ Res; 1991 Aug; 69(2):344-59. PubMed ID: 1860177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of a calsequestrin-like calcium-binding protein from carp (Cyprinus carpio) sarcoplasmic reticulum.
    Watabe S; Ushio H; Hashimoto K
    Comp Biochem Physiol B; 1991; 99(3):545-52. PubMed ID: 1769203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.