These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9399072)

  • 21. Scanning force microscopy of nucleic acid complexes.
    Lillehei PT; Bottomley LA
    Methods Enzymol; 2001; 340():234-51. PubMed ID: 11494852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic force microscopy in histology and cytology.
    Ushiki T; Hitomi J; Ogura S; Umemoto T; Shigeno M
    Arch Histol Cytol; 1996 Dec; 59(5):421-31. PubMed ID: 9037379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous collection of topographic and fluorescent images of barley chromosomes by scanning near-field optical/atomic force microscopy.
    Yoshino T; Sugiyama S; Hagiwara S; Ushiki T; Ohtani T
    J Electron Microsc (Tokyo); 2002; 51(3):199-203. PubMed ID: 12113628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognition imaging of chromatin and chromatin-remodeling complexes in the atomic force microscope.
    Lohr D; Wang H; Bash R; Lindsay SM
    Methods Mol Biol; 2009; 464():123-38. PubMed ID: 18951183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlative Super-Resolution Fluorescence Imaging and Atomic Force Microscopy for the Characterization of Biological Samples.
    Bondia P; Casado S; Flors C
    Methods Mol Biol; 2017; 1663():105-113. PubMed ID: 28924662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Application of atomic force microscopy in chromosome research].
    Li Q; Zheng Q; Ding Y; Ma L; Li LJ
    Yi Chuan; 2009 Jun; 31(6):573-80. PubMed ID: 19586855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of 3D imaging for providing insights into high-order structure of mitotic chromosomes.
    Yusuf M; Kaneyoshi K; Fukui K; Robinson I
    Chromosoma; 2019 Mar; 128(1):7-13. PubMed ID: 30175387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scanning force microscopy of chromatin fibers in air and in liquid.
    Fritzsche W; Schaper A; Jovin TM
    Scanning; 1995; 17(3):148-55. PubMed ID: 7795839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.
    Meroni A; Lazzaro F; Muzi-Falconi M; Podestà A
    Methods Mol Biol; 2018; 1672():557-573. PubMed ID: 29043648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.
    Owen RJ; Heyes CD; Knebel D; Röcker C; Nienhaus GU
    Biopolymers; 2006 Jul; 82(4):410-4. PubMed ID: 16302196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High resolution imaging of immunoglobulin G antibodies and other biomolecules using amplitude modulation atomic force microscopy in air.
    Santos S; Thomson NH
    Methods Mol Biol; 2011; 736():61-79. PubMed ID: 21660721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective cleaning of the cell debris in human chromosome preparations studied by scanning force microscopy.
    Tamayo J; Miles M; Thein A; Soothill P
    J Struct Biol; 1999 Dec; 128(2):200-10. PubMed ID: 10600573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of human chromosomes studied by atomic force microscopy.
    Tamayo J
    J Struct Biol; 2003 Mar; 141(3):198-207. PubMed ID: 12648566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Progress in the applications of high-speed atomic force microscopy in cell biology].
    Liu L; Wei Y; Liu W; Sun T; Wang K; Wang Y; Li B
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Jul; 38(8):931-937. PubMed ID: 30187879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection.
    Stark RW; Rubio-Sierra FJ; Thalhammer S; Heckl WM
    Eur Biophys J; 2003 Mar; 32(1):33-9. PubMed ID: 12632204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salt-dependent chromosome viscoelasticity characterized by scanning force microscopy-based volume measurements.
    Fritzsche W
    Microsc Res Tech; 1999 Mar; 44(5):357-62. PubMed ID: 10090211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scanning Near-field Optical/Atomic Force Microscopy detection of fluorescence in situ hybridization signals beyond the optical limit.
    Fukushi D; Shichiri M; Sugiyama S; Yoshino T; Hagiwara S; Ohtani T
    Exp Cell Res; 2003 Oct; 289(2):237-44. PubMed ID: 14499624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping real-time images of high-speed AFM using multitouch control.
    Carberry DM; Picco L; Dunton PG; Miles MJ
    Nanotechnology; 2009 Oct; 20(43):434018. PubMed ID: 19801760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis.
    Rivetti C; Guthold M; Bustamante C
    J Mol Biol; 1996 Dec; 264(5):919-32. PubMed ID: 9000621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic force microscopy in biology: technology and techniques.
    Gadegaard N
    Biotech Histochem; 2006; 81(2-3):87-97. PubMed ID: 16908433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.